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CHAPTER 1

Introduction

1.1 Energy storage in hybrid electric vehicles

In 1996, General Motors Corp. (GM) leased its first pure electric vehicle (EV-1) to
customers in Arizona and California. The market reaction to these vehicles was dis-
appointing: for example, in 1999, GM leased only 137 EV-1s. The year 2002 marked
the end for EV-1 as GM pulled the plug. This was only one in a series of blows to the
electric vehicle industry, following the discontinuance of the Ford Ranger EV and
the Nissan Altra EV. In 2002, Ford Motor Co. also put its Th!nk Mobility subsidiary,
maker of a plastic-bodied electric two-seater, up for sale.

The sales of hybrid electric vehicles, on the other hand, increased over the same
time span and is still increasing [Jon03]. One of the reasons for this is that elec-
tric vehicles suffer from limitations that most customers simply found unacceptable.
The worst of these is its range: the average electric vehicle can drive only around
80 km before it needs a recharge. Charging takes several hours, the batteries per-
form poorly in cold weather, have a very restricted lifespan and are expensive.

The range problem mentioned above is due to the low energy density of the
energy storage device. Electrical energy storage technologies cannot yet compete
with the extremely high energy densities of gasoline, diesel and LPG. For example,
a standard petrol car’s fuel tank of 50 l stores 2.35 GJ of energy, corresponding to
an energy density of 47 GJ/m3 (13 MWh/m3). The best energy storage technologies
available today (in terms of energy density) are electrochemical technologies (i.e.
batteries), with an energy density of about an order of magnitude lower than this.

Hybrids on the other hand, having per definition at least two energy sources,
demand a much lower energy density of the storage device than pure electric vehi-
cles. The power density is critical, however, since power delivery rather than energy
delivery is the main function of storage in such a vehicle. In a hybrid, the primary

1
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(a)

(b) (c)

Figure 1.1: Hybrid electric vehicles: (a) City bus; Commercially available hybrid elec-

tric passenger cars: (b) Toyota Prius; (c) Honda FCX.

energy source is sized for the average power and the secondary energy source (a
storage device) for the peak power. This practice is referred to as “load levelling”
or “peak shaving” since it levels or “shaves” the peaks of the power demand off the
primary energy source, so that it only needs to supply the average.

Other advantages of hybrid electric vehicles include a reduction of emissions
and improved efficiency since the internal combustion engine, if used, can be oper-
ated in the narrow rpm band, where it is most efficient. Regenerative braking, where
braking energy is converted into electrical form and pumped back into the storage
device, further improves efficiency.

Figure 1.1 shows three hybrid electric vehicles. Figure 1.1(a) shows a city bus
with a LPG engine as the primary energy source and a flywheel energy storage sys-
tem as its secondary energy source. Figures 1.1(b) and (c) show two commercially
available hybrid passenger cars: the Toyota Prius and the Honda FCX [Ros03]. The
Toyota Prius has a gasoline internal combustion engine (ICE) and a battery system
as the primary and secondary energy sources, respectively. Fuel cells are used for
the primary energy source in the Honda FCX, with supercapacitors as the secondary
energy source.

Power and energy required of an energy storage technology

To form an idea of the requirements placed upon the energy storage technology in
hybrid electric vehicles, a few examples of passenger cars, busses and light-rail ve-
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hicles are discussed next.

Passenger cars

Heitner [Hei94] states that 50–60 Wh/kg and 750–1200 W/kg would meet the de-
sired requirements of a hybrid electric passenger car (from the Idaho National En-
gineering Laboratory (INEL)). Rajashekara [Raj94] lists a higher specific energy re-
quirement than [Hei94] at 100 Wh/kg at a lower specific power of 400 W/kg. He
further notes that 2500 cycles are required as a minimum, and the cost should be no
more than $75/kg. In addition, a 40–80% recharge capacity in 30 minutes should be
reached. In 1994, when his article was publisehed, these requirements were not yet
met.

Hunt et al. [Hun95] distinguishes between dual mode and power assist mode.
In dual mode, the vehicle is completely powered by an energy storage device. In
power assist mode, the energy storage device adds its power to that of the primary
energy source.

In dual mode, the approximate requirements are 50–60 W per kilogram vehicle
mass needed to accelerate from 0–96 km/h in 10–12 s. For a standard motor vehicle
in the USA, this translates to approximately 60–100 kW. A storage capacity of around
10 kWh is required.

The peak power requirements in power assist mode are identical to those in
dual mode, except that the average power of the primary energy source is sub-
tracted. Typically in a standard motor vehicle, the average power is around 15–
25 kW. Therefore, the peak power requirements for the secondary energy source is
typically 35–85 kW. The Toyota Prius of Figure 1.1(b) operates mainly in power assist
mode, and the secondary energy source provides 38.8 kW. This source is a battery
bank of 1.8 kWh with a system weight of 70 kg, translating into a specific energy and
power of 26 Wh/kg and 554 W/kg. More detail on the Toyota Prius can be found in
[Her98].

The other vehicle shown in Figure 1.1, the Honda FCX, has hydrogen proton-
exchange membrane fuel cells as its primary energy source. These deliver 78 kW
average power, and with the peak power supplied by supercapacitors, the car can
accelerate about as well as Honda’s Civic [Ros03]. The car has a 156 l fuel tank
mounted under the floor and the driving range is about 350 km.

Busses

Busses are subject to many accelerations and decelerations, making them prime can-
didates for being transformed into hybrid electric vehicles. Miller et al. [Mil97] de-
scribes a battery evaluation for a fuel cell/battery bus (25 passengers). The methanol-
fuel, phosphoric acid fuel cell was rated at 50 kW. The peak charge power level for
the batteries was 55 kW during regenerative braking and they delivered 70 kW dur-



4 Chapter 1

ing discharge.1 Two battery types were investigated: lead-acid (∼1800 Wh, 31 Wh/kg,
180 W/kg) and NiCd (∼1200 Wh, 195 W/kg). Miller et al. concluded that the NiCd
technology was better than the lead-acid one because of its longer life, in spite of its
higher initial cost.

The public transport bus built by CCM B.V. (Nuenen, the Netherlands) uses the
EMAFER flywheel system as secondary energy source. The flywheel stores 6.7 MJ
(1.9 kWh) of usable energy and has a continuous output power varying between
133 kW and 200 kW; the power transfer time is 40 s. The system weighs 800 kg,
translating into a specific energy and power of 2.4 Wh/kg and 250 W/kg, respec-
tively.2

Since 1988, the Magneto-Dynamic Storage (MDS) K3 system of Magnet-Motor
GmbH (Starnberg, Germany) is operating in a diesel-electric city bus. Since 1992,
12 trolley busses with these flywheels have been in operation in Basel, Switzerland.
The MDS K3 stores 7.2 MJ (2 kWh) of usable energy. The output power is 150 kW,
and with a system mass of 400 kg this corresponds to 5 Wh/kg and 375 W/kg.

Light-rail vehicles

Light-rail vehicles and trains may also be converted into hybrid form. In this case,
the primary energy source is the overhead lines and the secondary source is the
energy storage device.

In light- and heavy-rail applications, the energy storage device may be removed
from the vehicle and placed at the station. In this case, several vehicles can benefit
from its presence in the system instead of only one.

Reiner and Gunselmann [Rei98] report on a demonstration project supported
by the EU-LIFE program. It consists of a Magnet-Motor MDS system of 9 kWh and
900 kW. At the time of their publication the flywheel system was to be mounted in
a substation of the Cologne public transportation system. In the project, the follow-
ing assumption was made: at least twice the energy of the vehicle moving at full
speed must be stored. For their application, the 50,000 kg vehicle was to be accel-
erated in 10 s to 50–80 km/h and decelerated again in 30 s. This means that the
required energy and power is about 8.6 kWh and 1 MW. The MDS machine used
was optimized for low no-load losses and high efficiency (92–95%). A very impor-
tant requirement for light-rail vehicles like trams and metros is a high cycle life, since
they can have up to 40 stop-and-go cycles per hour. The used MDS flywheel system
achieves 14.4 Wh/kg and 1.5 kW/kg.

1A vehicle actually requires a higher power level during regenerative braking than during acceleration.
It is assumed that [Mil97] investigated rates that are the other way round because of the bidirectionality
limitation of batteries. This limitation will be discussed more thoroughly in Chapter 2.

2The system is capable of storing 14.4 MJ of usable energy and a continuous output power of 300 kW;
this translates into a specific energy and power of 5 Wh/kg and 375 W/kg, respectively.
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Research into high-power-density energy storage technologies

Increasing the energy storage capacities and energy densities of energy storage de-
vices remains interesting for many applications.

From the discussion so far, however, we see that this does not apply for hybrid
electric vehicles. Here, research into the increase of the power delivery capabilities
and power densities of these storage technologies is more interesting.

Several other applications exist where high power is needed for a short time
from the energy storage device.

Other high-power short-duration energy storage applications

One important application is in power quality; for example in voltage-sag ride
through. The compensation of voltage sags is needed for sensitive equipment, like
computer systems, which may trip or reset during a short blackout or brownout. An-
other example is in the paper industry, where a voltage sag may cause a downtime
of several hours to recover from a paper tear and resynchronize the drives.

From detailed studies such as the classic EPRI Distribution Power Quality Study
[EPR1] it is now well established that the vast majority of disturbances in line voltage
are very brief: less than 1 second. Dorr et al. [Dor97] classify power line disturbances
with a duration shorter than 10 ms as transient, those lasting between 10 ms and 3 s
as momentary, and those with a duration longer than 3 s as steady-state. Other clas-
sifications are made by Dugan et al. [Dug96] and Styvaktakis, Bollen and Gu [Sty00].
A method for comparing different voltage dip surveys is presented in [Bol02].

In a joint publication of EPRI and Westinghouse Electric Corp. [Nel96], it is
shown that 50 kJ of energy storage per MW of load will restore voltage to 90% for
roughly 70% of balanced sags, 150 kJ per MW is required for roughly 90% of the
balanced sags, 300 kJ per MW for 99%, etc. According to [Jou99] and [Zyl98], the
majority of loads need support in the fractional-kVA to 300 kVA power range.

Industrial applications of short-duration high-power transfer from energy stor-
age technologies include: solid-state lasers [Alb98], welding, induction heating, re-
sistive and wave heating, electron heating [Bas97]), (robot) actuators [Oh99], pulsed
magnets [Sch97], EM-forming, powder spraying [Dri97] and removal of surface lay-
ers by arcing, among others. Bulldozers and other high-power machinery tradition-
ally equipped with hydraulic actuators may also be a potential application if elec-
trical actuators are used.3 Fairground attraction applications, which need very high
accelerations for short times, for example to speed up roller-coaster carts, may also
be included as an industrial application.

All-electric combat vehicles (AECVs) are another application. Magnet-Motor
GmbH has supplied MDS systems for battle tanks in the past [Rei97], [Rei99]. In
[Ehr93], they list the projected development of the specific energy and power of their
MDS systems. These are:

3When one considers the large difference between the obtainable force density of hydraulic actuators
and that of electrical actuators, the latter can only replace the former for certain low-power applications.
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• 1991/2: 40 kJ/kg (11.4 Wh/kg) and 2.5 kW/kg;

• 1995: 80 kJ/kg (22.8 Wh/kg) and 2.5 kW/kg;

• 2000: 150 kJ/kg (41.7 Wh/kg) and 5–10 kW/kg;

• beyond 2000: 300 kJ/kg (83.3 Wh/kg) and 10 kW/kg.

Summary

Table 1.1 lists a summary of energy storage applications, including long-duration
applications like support of renewable energy sources and utility support.

As mentioned earlier in this introduction, the research into the increase in power
density and/or specific power of energy storage technologies for hybrid electric ve-
hicles is very relevant and interesting. The power transfer times in hybrid electric
vehicles range from several seconds to several minutes. (Table 1.1 lists 20 seconds
and 7 minutes.)

This thesis is mainly concerned with short-duration power transfer, comparable
to that of the energy storage device in a hybrid electric vehicle. All the applications in

App. [kW] [kWh] [kW/kg] [Wh/kg] ttr [s]

VSRTa 300 0.025 0.3

Industrial 100–3×106 0.14–45 (1.5–2.1)×103 3.8–5.6 0.006–5

AECVb 3000 16.7 7.5 41.7 20

Trams 1000 9 1.5 14.4 36

Busses 70–300 1.2–4 0.18–0.4 5–30 36–90

Cars 35–85 ∼ 1.8 0.4–1.2 25–100 160–420

UPSc 10–100 5–50 1 800–3 600

Ren. Sup.d 300 8–1000 45 10 000

Util. Sup.e 200–30 000 150–40 000 900–24 000

Table 1.1: Summary of typical requirements placed on energy storage technologies by

several applications. Requirements for power, energy, specific power, spe-

cific energy and power transfer time are listed, sorted on power transfer

time.

aFor a 300 kW load (ride-through carries full load power) and assuming 300 kJ storage per MW load
(covering 99% of balanced voltage sags [Nel96]).

bMagnet-Motor L3.
cSee [Wei98] and [Wei99].
dRenewables support. Based on two representative examples: A photovoltaic system [Fla88] and a

wind turbine [Hea94].
eUtility support: [Kun86], [Wal90], [Kot93], [Bal95], [Mil96] and [Tha99].
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Table 1.1 are thus included in the scope of the thesis except UPS systems, renewable
support and utility support.

1.2 Problem description

Firstly, this thesis is concerned with finding a suitable energy storage technology for
use in a hybrid electric city bus. The result of this search is documented in Chapter 2:
a flywheel energy storage system.

A project was started to design and build such a system for use in large hy-
brid electric vehicles like busses and trams. The project was conducted in collabora-
tion with the Centre for Concepts in Mechatronics (CCM) B.V. (Nuenen, the Nether-
lands). This project follows the successful EMAFER4 system, already mentioned in
Section 1.1. The flywheel in the EMAFER system rotates at 15 000 rpm; the achiev-
able energy and continuous power levels are 14.4 MJ and 300 kW, respectively. The
follow-up system, called EµFER, was initiated to reduce the overall size and mass,
to reduce the no-load losses and to develop a flatter profile than that of the EMAFER
system. To reduce the required size and mass, the rotational speed of the flywheel
of the EµFER system was increased to 30 000 rpm. The system stores 7.2 MJ and the
desired continuous power output is 150 kW, with the machine losses (both at load
and at no-load) as low as possible.

CCM was responsible for the power electronics, the mechanical and thermal
design and the actual construction of the system. During the initial stages of the
project and as a result of this collaboration, it was decided that the flywheel machine
should be an external-rotor version, with a radial-flux electrical machine integrated
into the flywheel itself.

In such a flywheel system, of which the most important requirements are low
losses and a high power output with a high power density, several components pose
an interesting challenge. Of these, the challenge of designing the electrical machine
in the flywheel is met in this thesis.

A permanent-magnet machine topology was chosen for its high power density.
The magnets are surface mounted and the rotor iron is solid. Both of these deci-
sions were made for mechanical reasons. Such mechanical design aspects are not
considered in the thesis; neither are thermal, control or system design aspects.5

Since the rotor rotates at very high speeds (up to 30 000 rpm) in a low-pressure
atmosphere, the ways of cooling the rotor are very limited. This necessitated the
need for very low rotor loss. To design a machine with very low rotor loss, an accu-
rate means for calculating the loss is needed. Obtaining such a loss calculation from
the magnetic field is a natural choice.

Although it is much easier to cool the stator than the rotor, the stator losses
should also be minimized. The stator losses consist of two parts: the iron and copper

4EMAFER = Electro-Mechanical Accumulator For Energy Re-Use.
5The fact that these issues are not discussed in the thesis does not mean that they are not important,

but merely that they fall outside the chosen scope of the thesis.
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losses. The iron losses are approximately two to three orders of magnitude larger
than the copper losses at no load, and these losses are concentrated in the stator
teeth. A slotless stator is therefore used in the machine, thereby drastically reducing
the induced losses in the stator iron. One consequence of the use of a slotless stator is
that the stator conductors are now directly exposed to the rotating magnetic field of
the permanent magnets. Once again, an accurate way to calculate this field is clearly
needed. Furthermore, it is recognized that several permanent-magnet configurations
or arrays are possible in a permanent-magnet machine. A way to calculate the field
due to such arrays is therefore also needed.

Another consequence of the use of a slotless stator is that it is a challenge to
calculate the magnetic field due to the stator currents accurately. This is so because
in conventional electrical machines with slotted stators, the stator currents can be
modelled as a surface current density on the surface of the stator. In this slotless
machine with its winding in the air gap, this approach is no longer valid, and the
current density in the air gap has to be used directly.

It has been stated above that the machine must have very low rotor losses. The
findings of other research on such losses in high-speed machines [Vee97], [Pol98]
suggested that this could be achieved by using a shielding cylinder in the flywheel
machine. This cylinder is used to shield the permanent magnets and the solid rotor
iron from high-frequency magnetic fields originating from the stator. Since a close
look at the induced eddy-current loss in the shielding cylinder is required, the mag-
netic field of the induced eddy currents in the cylinder should be included in a cal-
culation method. If this is done, the skin effect in the shielding cylinder is included,
which is very desirable.

All the calculation problems above were solved by the derivation of an analyti-
cal model of the electrical machine based on two-dimensional magnetic fields. This
model consists of two parts: the permanent-magnet field and the stator current field,
the latter including the effect of the eddy currents in the shielding cylinder. All rele-
vant and interesting machine quantities were derived from these two fields or their
combination. The analytical model includes three permanent-magnet arrays.

Analytical models are well suited for optimization since, even with the modern
PCs of today, a closed-form expression evaluates much faster than a similar calcu-
lation with the finite element method. The final part of the problem is to use the
analytical model for optimization of the machine. The optimization consists of two
parts: maximizing the electromagnetic torque, and minimizing the losses in the ma-
chine.

Thesis objectives

With the foregoing problem description in mind, the main objectives of the thesis
are:

1. To find the most suitable energy storage technology for use in large hybrid electric
vehicles like busses and trams.
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2. To design the electrical machine for the EµFER flywheel energy storage system.

As part of the machine design, the following is also a thesis objective:

3. To optimize the machine geometry for the given flywheel dimensions.

In order to meet objectives 1, 2 and 3, the last objective is introduced:

4. To derive a comprehensive analytical model of the electrical machine.

1.3 Thesis layout

The thesis is divided into three parts:

• Background. Chapters 2 and 3 discuss the background of the project and where
the thesis work fits in.

• The analytical model. Chapters 4, 5, 6 and 7 contain the specifics of the derived
analytical model.

• Optimization. Chapter 8 discusses the use of the analytical model for machine
optimization.

An overview of energy storage technologies is presented in Chapter 2 in an at-
tempt to find the most suitable technology for high-power, medium-energy appli-
cations like hybrid electric vehicles. Chapter 2 looks at four candidate technologies
by formulating trends gathered from an extensive literature study. The most impor-
tant criteria used in Chapter 2 are medium energy density and high power density.
It is shown that the flywheel energy storage system satisfies these criteria and it is
therefore a good choice for the applications discussed in Chapter 1.

Chapter 3 takes a general look at drive system topologies, converter choice and
machine type for high-power flywheel energy storage systems. In this chapter it is
also decided to limit the scope of the rest of the thesis to the electrical machine, which
is then introduced as the EµFER machine.

Chapter 4 starts the second part of the thesis, which deals with the specifics
of the analytical model. The use of the analytical method vs. the finite element
method is discussed, whereafter the power of the magnetic vector potential is ex-
plained. How the vector potential can be used to obtain useful machine quantities is
explained in sections on flux linkage, the Poynting vector and the Lorentz force.

Chapter 5 applies the method outlined in Chapter 4 to the permanent magnets.
The field due to the permanent magnets is then used to find the no-load voltage,
which is experimentally validated for the EµFER machine. Chapter 5 treats three
different permanent magnet arrays.

Chapter 6 derives the magnetic field due to the stator currents in the air gap
winding, also using the method outlined in Chapter 4. An analytical expression is
first developed for the three-phase current density, whereafter it is used to find the
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magnetic field. The eddy currents in the shielding cylinder cause a field in reaction
to the stator current field. This effect is also included in the model. Directly from
the magnetic vector potential, an expression for the stator self-inductance is derived,
which is also developed for a locked rotor. After this, the Poynting vector is used to
find an expression for the induced loss in the shielding cylinder, which is further de-
veloped into the locked-rotor machine resistance. The locked-rotor machine induc-
tance and resistance are experimentally validated at the end of Chapter 6. Chapter 6
concludes with the machine voltage equation, within which all quantities are now
known and therefore the machine has been described completely at this point.

Chapter 7 goes a step further by combining the two magnetic fields of Chap-
ters 5 and 6 into one by using the assumption of linearity of the vector potential.
From this combined field, the electromagnetic torque can be calculated, which is
done by means of the Lorentz force and Poynting vector methods. The stator losses
are also a combined field effect, and are discussed next. The calculated locked-rotor
resistance is modified for high frequencies by means of a simple iron-loss model,
which is experimentally validated.

Chapter 8 utilizes the full power of the analytical model by investigating some
optimizations. The optimization criteria chosen are the electromagnetic torque, sta-
tor iron losses and the induced eddy current loss in the shielding cylinder. These
are optimized with respect to the permanent magnet array, winding distribution,
machine geometry and converter options.

Chapter 9 summarizes the most important conclusions reached in the thesis and
makes suggestions for the direction, content and scope of future research.
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Energy storage technologies

2.1 Introduction

Several energy storage technologies are available today in various stages of devel-
opment. However, as motivated in Chapter 1, in this thesis the focus is mainly on
energy storage technologies with the ability to deliver high power, with power trans-
fer times lasting up to a few minutes. This eliminates technologies like pumped
hydro, compressed air, flow batteries, etc. These are more suited to deliver their
energy over longer periods of time, for example in energy management applica-
tions like load levelling, peak shaving and arbitrage, where energy storage is used in
daily cycles for economic gain. (See the web site of the Energy Storage Association,
http://www.energystorage.org, for more information on these topics.)

Four technologies were selected in this chapter for closer investigation with the
emphasis on power delivery, power density and specific power. They are:

1. electrochemical energy storage: batteries and fuel cells (Section 2.2);

2. electric field energy storage: metal-film capacitors, aluminium electrolytic ca-
pacitors and supercapacitors (Section 2.3);

3. magnetic field energy storage: superconducting electromagnets (Section 2.4);
and

4. kinetic energy storage: flywheels (Section 2.5).

These four technologies were chosen since they have reached a level of maturity, are
commercially available in some form or another, and more data was available on
these than on other technologies.

In Section 2.6, a comparison of these technologies is made. Criteria for the com-
parison includes power, power density, specific power, energy, energy density, spe-

11
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cific energy, lifetime, bidirectionality, cost, etc. Section 2.7 uses this comparison to
motivate the choice of the kinetic energy storage technology for application in a hy-
brid electric city bus.

2.2 Electrochemical energy storage

Electrochemical energy storage technologies can be divided into two types: batteries
and fuel cells. The next two subsections pay some attention to these technologies.

2.2.1 Batteries

Batteries convert the chemical energy stored inside them into electrical energy when
connected to an external load. They can be either primary (non-rechargeable) or sec-
ondary (rechargeable). The previous section indicates that the technologies consid-
ered in this chapter are required to be bidirectional. Primary batteries are therefore
not considered here.1

The lead-acid battery

The most common secondary battery today is still the lead-acid type, invented in
1859 by Planté. A lead-acid battery consists of two plates, one of lead and the other
of lead oxide, suspended in an electrolyte of sulphuric acid (H2SO4), as shown in
Figure 2.1 [Ter94]. During discharge both the anode and cathode are converted into
lead sulphate, PbSO4. Charging restores the cathode to lead oxide and the anode to
lead.

Overcharging the lead-acid battery leads to generation of hydrogen gas at the
anode and oxygen at the cathode, necessitating vents to the outside atmosphere. The
reason for the hydrogen generation is that the potential of the anode gets too high.
This also occurs during a rapid charge of the battery, i.e. at a very high power level.

The valve-regulated lead-acid battery

The mix of hydrogen and oxygen occurinf inthe lead-acid battery whenit is over-
charged is explosive. This potentially dangerous situation was partially solved in the
1960s with the invention of the valve-regulated lead-acid (VRLA) battery [Nel01]. In
the VRLA, the system is completely sealed. The principle of operation is basically as
follows: the cathode goes into overcharge, releasing oxygen that readily diffuses to
the surface of the electrode, where it is recombined.

In the VRLA battery, the amount of material of the anode is higher than that
of the cathode. Because of this fact and the oxygen recombination the anode never
reaches the potential at which hydrogen is released. No gasses are given off, the

1Fuel cells are, however, included in this discussion although they are also primary batteries according
to this definition. The reason why they are included is because of the contemporary interest in them.
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Figure 2.1: A schematic diagram of the lead-acid battery.

overall chemistry shows no net change, and all the excess electrical energy is con-
verted into heat, which is dissipated. The situation just described is the ideal one. In
reality, all VRLA batteries “give off relatively small quantities of gases under some
conditions, and not just [in] abusive situations” [Nel01].

The thin metal film (TMF R©) lead-acid battery

The TMF R© lead-acid battery is a variation of the VRLA battery developed by Bolder
Technologies Corporation in the USA [Nel97a], [Nel97b], [Bha99]. Since it is a VRLA
battery, the highly porous separator carries 70% of the electrolyte and 30% is roughly
evenly distributed between the two electrodes.

The TMF R© battery differs from a conventional VRLA battery only in its con-
struction. The plates are very thin (250 µm or less), spiral wound and very closely
spaced [Nel97b]. This reduces the internal impedance significantly and results in
low loss even at very high discharge currents.

Other battery types

Another type of battery based on the lead-acid chemistry is the bipolar lead-acid
battery. One such system was developed by TNO in the Netherlands [Kol99].

Other types of batteries include nickel-cadmium, nickel-zinc, nickel-iron, so-
dium-sulphur, lithium-sulphur and many others. These batteries operate on the
same basic principles as the lead-acid battery, but their chemistries are different. As
a result some of these battery types exhibit better performance than the lead-acid or
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VRLA battery types.
According to Nelson [Nel01], the battery chemistries of the NiCd cell and the

VRLA are very similar, although the oxygen recombination functs better in the NiCd
battery. He argues that this is due to the fact that a lot of research and development
effort was invested in NiCd technology between 1940 and 1960. According to him,
the VRLA battery may be improved substantially if the same R&D effort is put into
it.

Companies developing high-power batteries2 include Saft (France) [Owe99, Saf],
and Sanyo (Japan) [San]. Saft developed high-power Li-ion and NiMH batteries
specifically for hybrid electric vehicles. Sanyo developed the NiMH batteries that are
used in the Toyota Prius of Figure 1.1(b). The 288 V battery bank, rated for 1.8 kWh
and with a total system weight of 70 kg, delivers 38.8 kW to the drive system when
needed.

Internal impedance

The structure of Figure 2.1 results in a high internal impedance, which is particularly
due to the wet electrolyte and low contact area. It reduces power density and makes
conventional lead-acid batteries not the best technology for use as a burst power
source.3

The surface areas of VRLA and TMF R© lead-acid batteries are larger than the
conventional type, reducing the internal impedance, but not sufficiently to solve the
problem altogether.

Another complication with lead-acid batteries is that they have a different inter-
nal impedance depending on whether they are charged or discharged. During charg-
ing the internal impedance is significantly higher than during discharging, because
of the gas generation discussed above. More gas bubbles mean a smaller contact area
between the electrodes and the electrolyte, which results in a higher impedance.

VRLA types, including the TMF R© battery, perform better since less gas is gen-
erated, but the difference in impedance when charging and discharging remains.
The 2 V, 1.2 Ah Bolder TMF R© cell can be fully discharged in 1 s at 1 kA, and then
recharged in a much longer period of 2–3 minutes [Nel97a].

As the ideal burst power source must be able both to deliver and absorb energy
at very high rates, lead-acid batteries are not the best source of burst power. How-
ever, for some applications that do not need the energy storage element to be able
to absorb the energy at as high a rate as it delivers it, like power line conditioning,
lead-acid battery technologies seem promising.

2The reason why these companies are mentioned is because they represent the state of the art in battery
technology today.

3An exact description of the complex internal impedance of lead-acid batteries is outside the scope of
this thesis. Work has been done in this area at the RWTH Aachen in Germany [Kar01].
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Lifetime

There are irreversible physical changes occurring inside the two electrodes of the
lead-acid battery, which deteriorate performance and ultimately render the battery
useless. Failure occurs between about 200-2000 cycles, depending on the design,
duty cycle and the depth of the discharge-charge cycles.

Although it has a better construction with regards to internal impedance than
the conventional lead-acid battery, the TMF R© lead-acid battery does not have a sig-
nificantly longer lifetime. It was reported that it took 1500 cycles at 100% depth of
discharge (DoD) to reduce the battery to 80% of its initial capacity [Bha99].

Battery weight and specific power

All battery technologies require a construction with a high amount of chemically
inactive material: grid metal, connectors, separators, and cell containers. In the lead-
acid battery, this fact and the use of lead results in a battery with a high mass. This
means that the specific power [W/kg] of lead-acid batteries is not very high. The
VRLA and TMF R© lead-acid batteries have higher values, but these are still not very
high when compared with other energy storage technologies. Several research ef-
forts in reducing the battery weight are being conducted; for instance the use of car-
bon fibre to form the grid structure in the cathode has been investigated in [Ter94].

2.2.2 Fuel cells

The history of fuel cells goes even further back than that of batteries: the princi-
ple of the hydrogen-oxygen cell was demonstrated in 1839 by Grove in England
[Ter94]. Strictly speaking, fuel cells are not electrochemical energy storage devices in
the same sense as batteries, since they do not store their own fuel and oxidant. In-
stead, they receive a constant supply of these two chemicals from an outside source,
where it is stored. In contrast, a battery stores its fuel and oxidant internally.4 In the
lead-acid battery, the fuel (lead) is stored in the anode and the oxidant (lead oxide)
is stored in the cathode.

Figure 2.2 shows a schematic diagram of an ion-membrane fuel cell, which is
one of a number of different types of fuel cells that underwent development and
refinement in the past [Mat87]. Hydrogen fuel is supplied from a gas chamber on
the anode side and the oxidant, air or oxygen, is supplied from a gas chamber on the
cathode side. The anode and cathode are separated by an ion-exchange membrane
of about 1 mm thick which allows the positive hydrogen ions (H+) to pass, but not
the neutral oxygen (O2) molecules. Electrons are separated from the supplied 2H2

by the catalyst-coated membrane, in the following chemical reaction:

2H2 −→ 4H+ + 4e−, (2.1)

4One may of course widen the definition of a fuel-cell-based energy storage system to include the
storage tanks for the fuel and oxidant.
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while the reaction at the cathode combines the electrons, the H+-ions and the sup-
plied oxygen to yield the waste product, water:

O2 + 4H+ + 4e− −→ 2H2O. (2.2)

The energy converted into electrical form by an ion-membrane fuel cell in this
way is equal to

E f c,elec = neVf c, (2.3)

where n is the number of electrons, e the electron charge and Vf c the cell’s electro-
motive force, 1.23V.

Fuel cells operate best when running continuously and cannot respond rapidly
to load changes [Jou99]. Therefore they are not ideally suited as a burst power
source. This is clearly seen in the commercially available Honda FCX of Figure 1.1(c).
In this car, the main energy source is fuel cells, supplying the average power demand
(period: typically minutes), while supercapacitors supply the peak (burst) power de-
mand (seconds).
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Figure 2.2: A schematic diagram of the ion-membrane fuel cell.

2.3 Electric field energy storage

2.3.1 Metal-film capacitors

The capacitance of a parallel plate capacitor is given by:

C =
εrε0 Ae

d
, (2.4)
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where εr is the dielectric constant or relative permittivity, ε0 is the permittivity of
vacuum, Ae is the effective area of one of the plates and d is the dielectric thickness.
The energy stored in the capacitor’s electric field is:

Ee =
1

2
CV2, (2.5)

where V is the voltage between the plates.
Metal-film capacitors have very high specific powers, typically between

100 kW/kg and 1 MW/kg. This is at very low specific energies, i.e. below 0.1 Wh/kg.
The reason for this is that the effective areas of the plates are not very large since they
are in essence a parallel plate structure rolled up in a can. What is gained in low in-
ternal impedance and therefore specific power is paid for by a reduction of specific
energy. The complete discharge time of parallel plate capacitors ranges from the µs
to the ms region, which makes these capacitors a good candidate for burst power on
the fast side of the time scale. The low amount of stored energy makes metal-film
capacitors useful only for a limited number of applications, however.

2.3.2 Aluminium electrolytic capacitors

Electrolytic capacitors are very common in the power electronics industry today due
to their high capacitance density [F/m3] in comparison to that of metal-film capac-
itors. They are called electrolytic capacitors because the dielectric is formed by an
electrolytic process. The most common type of electrolytic capacitor in industry is
the aluminium electrolytic capacitor, although several other different types exist like
tantalum, niobium, zirconium and zinc. In an aluminium electrolytic capacitor, the
dielectric is aluminium oxide (Al2O3), which is formed into a thin layer upon an
aluminium plate by an electrolytic process, i.e., a current is passed through it in an
appropriate solution. The thickness of the oxide layer depends on the formation
voltage, which is typically 3–4 times higher than the rated voltage. The dielectric
thickness is in the order of 1µm. A property of the oxide layer is that it is rectifying;
it conducts in one direction and insulates in the other.

From (2.4) the capacitance can be increased by increasing the effective area Ae,
and/or increasing εr, and/or decreasing d. Aluminium oxide has a relative permit-
tivity of around 8, and tantalum pentoxide (Ta2O5) of about 27, however, tantalum
electrolytic capacitors are more expensive. The effective area of both types can be
increased by etching the oxide layers, which results in an increase in Ae of between
30–100 times [Kru]. The dielectric strength of the oxide layer in an aluminium elec-
trolytic capacitor limits the voltage that it can withstand and therefore the maximum
energy storage capacity. For example, a 800 V, 680 µF aluminium electrolytic capaci-
tor stores just 217.6 J of energy when fully charged. The electrolyte also deteriorates
with time and a typical capacitor used in a DC bus in industry will typically last for
2–3 years of before it needs replacing.
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2.3.3 Supercapacitors

In 1853, Helmholtz observed that when a voltage is applied across two carbon elec-
trodes suspended in a conductive fluid, no continuous current flows until a certain
voltage threshold is reached. This is the principle upon which supercapacitors are
based. Although a supercapacitor is an electrochemical device, it stores energy elec-
trostatically, and not electrochemically like a battery, because no chemical reactions
take place in the storage mechanism. The applied electric field causes the ions in the
fluid to accumulate in a very thin layer bordering the electrode – it effectively polar-
izes the electrolyte [Pow]. The applied voltage on the positive electrode attracts the
negative ions in the electrolyte while the voltage on the negative electrode attracts
the positive ions in the electrolyte. This creates two layers of charge separation, one
at the positive and one at the negative electrode – hence the name double layer ca-
pacitor. Porous carbon electrodes are used which can have a surface area of up to
104 mm2/g [Die99]. This high area, combined with the extremely close spacing of
the separated charges, typically in the order of 10 Å, results from (2.4) in the high
capacitances that characterize these devices. The electrolyte breakdown voltage of
supercapacitors is low (below 3 V), which limits their practical implementation to
lower power requirements than that which batteries can provide.

Supercapacitors are fully bidirectional and have a very long life expectancy, up
to 100 000 cycles, with a cost of approximately $500/kW [Jou99]. These facts make
supercapacitors a relatively attractive option for burst power applications with a
low power demand [Dur99], [Pil95]. Although lowering of the equivalent series
resistance of supercapacitors has been investigated [Pel99], [Bis99], it still remains
fairly high (∼15 mΩ for a 150 kJ-module) [Die99].

2.4 Magnetic field energy storage: Superconducting elec-

tromagnets

Inductors store energy in the magnetic field associated with the current flowing in
their coils. The amount of stored energy is:

Em =
1

2
LI2, (2.6)

where I is the current flowing in the coil. It is obvious from (2.6) that to maximize the
stored energy, the current flowing in the coil should be as high as possible. This is the
principle behind superconducting magnetic energy storage (SMES) systems. Due to
the high resistance of non-superconductors, the coil current cannot be made high
enough to store significant amounts of energy. Superconductors have three critical
parameters: current density J, magnetic flux density B and temperature T. The safe
operating region of a superconductor is approximately within the positive 1

8 sphere
on the graph of J vs B vs T, with Jc, Bc and Tc defining the critical points, i.e. the axis
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intersections. If kept within these constraints, a superconducting material has zero
resistance to DC current.

Practical superconductors are usually made from NbTi or Nb3Sn multi-filaments
embedded in a copper or aluminium stabilization matrix [Hor97], which is also used
to absorb the energy in case the superconductor suddenly becomes normally con-
ducting. The preferred material at present is Nb3Sn as it is easier to work with. The
critical values for Nb47%Ti [Ter94] is

Jc := J|B=0,T=0 = 104 A/mm2

Bc := B|J=0,T=0 = 15 T (2.7)

Tc := T|J=0,B=0 = 9.2 K

A normal conductor in a transformer design, for example, would typically be used
at J = 3 A/mm2, while (2.7) shows that for the Nb47%Ti-superconductor it is ∼3300
times higher. It can thus be seen that extremely high currents can be reached with
SMES systems. If a normal conductor were to be used at the same current density
and were to be constructed identically as one made of Nb47%Ti as a comparison, from
(2.6) it follows that the superconductor coil would be able to store approximately 107

times more energy. Due to the fact that high magnetic flux densities are utilized, air
is used as the core in these systems. Windings can be solenoidal (which is cheaper,
but has a high stray field), or toroidal (with zero external magnetic field, but it is
expensive). The conductors in a SMES system are subjected to extremely large forces
[Ter94]. A sound (and expensive) mechanical construction should therefore be used
to counteract these forces [Hor97], [Hor99].

Research into high-temperature superconductors (HTS) is being conducted by
several researchers [Boo88], [Kum91], [Moo99]. These are materials with a higher
Tc than that of NbTi shown in (2.7). This allows the use of liquid nitrogen instead
of liquid helium for the cryogenic coolant, which reduces cost substantially. The
problem with HTS is that the materials are brittle ceramics, which makes it very
difficult to manufacture practical conductors. Significant progress has been made
by the American Superconductor Corporation with their BSCCO flexible wire in a
metal matrix. It is a ceramic copper oxide compound containing bismuth, strontium,
calcium, and a small amount of lead [Moo99]. One such coil made of this wire was
used successfully in a SMES system as a dip protector on a paper mill [Sch99].

The specific powers of SMES systems are in the order of 200–1500 W/kg at spe-
cific energies of approximately that of double layer capacitors, placing them between
aluminium electrolytic capacitors and double layer capacitors. This makes them
suitable for complete discharges in 100 ms–60 s. These time values apply to both
charge and recharge times, since SMES systems are fully bidirectional in their spe-
cific power capabilities. The factor limiting the specific power of SMES systems is
the ac resistance of the coil due to the skin and proximity effects. If a sudden high
energy withdrawal takes place, a large di/dt is forced onto the coil, of which the
resistance then rises at localized points due to the above two effects. This in turn
causes a temperature rise which can force the superconductor out of the safe operat-
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ing area defined by (2.7). This quenches the coil (it becomes a normal conductor) at
these localized spots. Extreme power dissipation then takes place at these spots and
potentially destroys the coil.

SMES systems have a capital cost of around $700–$1000/kg and are available
in the highest power levels of all the technologies considered here (up to 1 GW),
according to [Jou99]. After fuel cells, they are the most expensive of all the options
considered in this study. The cost of SMES systems are broken down into roughly
the following: 10% cryogenics, 30% SMES coil and 60% power conversion [Kar99].
SMES systems have an almost unlimited number of discharge-charge cycles and can
be fully discharged without any ill effects or reduction of the high efficiency (>95%)
[Jou99].

2.5 Kinetic energy storage: Flywheels

Kinetic energy storage in the form of primitive flywheels has been known for cen-
turies, but it is only since the development of high-strength composite materials and
low-loss bearings that this method became a viable technical option.

The kinetic energy stored in a rotating mass is given by:

Ek =
1

2
Iω2 [J], (2.8)

where I is the moment of inertia and ω is the angular velocity. The moment of inertia
is determined by the mass and geometry of the flywheel and is defined as:

I =

∫
x2dmx [kg.m2], (2.9)

where x is the distance from the axis of rotation to the differential mass dmx.

2.5.1 The thin rim

In the special case of a thin rim flywheel (ri/ro → 1, where ri is the inside and ro the
outside radius), all the mass is concentrated in the infinitely thin outer rim. Thus,
from (2.9) the moment of inertia for a thin-rim is I = mr2, where m is the mass and r
the radius of the flywheel. The stored energy in a thin-rim flywheel then becomes:

Ek =
1

2
mr2ω2 [J]. (2.10)

To obtain the specific energy, (2.10) is divided by the mass to give:

ek,m =
1

2
r2ω2 [J/kg]. (2.11)

If equation (2.11) is multiplied by the mass density ρ of the flywheel, the energy
density is obtained:

ek,v =
1

2
ρr2ω2 [J/m3]. (2.12)
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For a thin-rim flywheel, the material should withstand a tangential stress of σmin for
a given rotational velocity ω. This stress is given by [Gen85]:

σmin = ρr2ω2 [N/m2]. (2.13)

From (2.12) and (2.13) the maximum achievable energy density with a particular
material then becomes:

êk,v =
1

2
σmin [J/m3]. (2.14)

From (2.14) it is clear that in order to obtain a high energy density, a high
strength material is needed. This is the reason why flywheel energy storage sys-
tems only recently became a viable option, since economically viable high-strength
fibre composite materials are a fairly recent development, i.e. from the early 1980s
[Gen85]. If (2.14) is divided by ρ, one obtains for the maximum obtainable specific
energy:

êk,m =
1

2

(
σmin

ρ

)
[J/kg]. (2.15)

From (2.15) it can be seen that the specific energy is inversely proportional to the
mass density of the flywheel material, as one would expect. The factor 1/2 in (2.14)
and (2.15) is only valid for thin-rim flywheels.

2.5.2 Other flywheel shapes

A more general expression for the maximum energy density, valid for all flywheel
shapes, is obtained from (2.14):

êk,v = Kσmin [J/m3], (2.16)

and for the maximum specific energy,

êk,m = K
σmin

ρ
[J/kg], (2.17)

where K is the form factor or shape factor. It is dependent upon the flywheel geom-
etry and comes essentially from the moment of inertia I [Gen85].

Figure 2.3 shows four different flywheel shapes with their respective form fac-
tors. The Laval disk, named after Carl de Laval, the Swedish engineer who invented
it, has a form factor of K = 1. This flywheel shape has the property that the radial
and tangential stress is equal at all points inside the flywheel. It is a theoretical ge-
ometry with ro → ∞. In practice it is thus not possible to have K exactly equal to
1.

A more manufacturable geometry, the solid disk, is shown in the second cross
section of Figure 2.3, and has a K of below 2/3. The thin rim, which like the Laval
disk, also is a theoretical flywheel, has all of its mass concentrated in the infinitely
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Figure 2.3: Four different flywheel shapes.

thin outer rim. It has a K of below 2/3. A disk with finite rim thickness has a signifi-
cantly lower shape factor. For example, a flywheel with ro/ri = 1.1, which is an easy
wheel to manufacture, has a form factor of only K = 0.305.

The first two flywheel geometries shown in Figure 2.3 are suitable only for
isotropic materials like metals because they can withstand a high stress in both the
tangential and radial directions. The last two geometries shown in Figure 2.3 are suit-
able for both isotropic and anisotropic materials. Anisotropic materials are materials
with different strengths in different directions like glass and carbon fibre compos-
ite materials. From (2.16) it can be seen that to optimize the energy density of the
flywheel, a high strength material should be used. If a high specific energy is also
required, from (2.17) the material should also have a low mass density.

2.5.3 Metals vs composite materials

The use of metals as the flywheel material will thus result in a high energy density
because of their high strength and the fact that they are isotropic, allowing geome-
tries with K approaching 1. Metals will however result in a low specific energy due
to their high mass density.

Anisotropic materials, typically fibre-reinforced epoxies, have higher tensile
strengths than metals, but only in the fibres’ longitudinal direction. Therefore they
can only be used in flywheel geometries with form factors approaching 1/2. This
limits the energy densities achievable with composite materials to energy densities
that are the same or slightly less than those obtained with metals, but higher specific
energies are achievable due to their low mass density.

Previous research [Tho93] has led to the summary of a comparison between
metals and composite materials used in flywheels, shown in Table 2.1. The values in
Table 2.1 have been calculated for the same amount of stored energy.
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Composite Metal

Weight 1 pu 2–5 pu

Volume 2.5–5 pu 1 pu

Circumferential speed 1.5 pu 1 pu

Weight of safety enclosure 0.5 × flywheel weight 2 × flywheel weight

Table 2.1: A comparison between metal and composite flywheels for the same stored

energy.

It can be seen from Table 2.1 that composite flywheels have an advantage over
metal flywheels when it comes to weight, but a disadvantage when it comes to vo-
lume. This means that larger containment structures are necessary for composite
flywheels. In spite of this, the failure mode of composite flywheels is much less
destructive than that of metals and the containment structure is required to be only
1
2 the weight of the flywheel, as opposed to 2 times the flywheel weight in the case of
metal flywheels [Tho93]. The circumferential speed (vc = rω) of composite flywheels
is a factor 1.5 higher than that of metal flywheels, thus making the windage losses
higher than in the case of metal flywheels.

The energy of flywheel systems lies between 15–150 Wh/kg and 2–11.9 kW/kg,
which places them roughly in the 3.6–60 s full-discharge region. They are fully bidi-
rectional in their specific power capabilities. Flywheels have the highest specific
power capability of all the technologies compared in this study, even higher than
that of aluminium electrolytic capacitors. They hold great promise as a burst power
source in the complete discharge region of 3.6 s–60 s.

2.5.4 The future

According to Bitterly of US Flywheel Systems, a specific energy of 200 Wh/kg is
possible for graphite fibre composite material in the near future [Bit98]. According to
him, in the future, materials with a very high strength (in the order of 20 000 MN/m2)
may become available for use in flywheel manufacturing, increasing the energy den-
sities significantly. These materials are very fine single-crystal whiskers, but have
yet to be proven commercially. It is also predicted that the specific power of fly-
wheel systems might be as high as 30 kW/kg in the future, the only limitation be-
ing the electrical machine [Bit98]. Flywheel energy storage systems are available in
power ratings of more or less 10 kW–10 MW with a capital cost of about $300/kW
[Jou99], making it the cheapest technology considered here, after batteries. There
are hardly any deteriorating effects5 as in batteries, and a high number of deep
discharge-charge cycles is obtainable (∼10 000 [Jou99]). The efficiency of the power

5There is still mechanical wear when conventional bearings are used. The use of magnetic bearings
solves this problem, but such bearings are generally not used in automotive applications.
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electronics tend to limit the depth of discharge6,7 to 95% [Bit98], which is consider-
ably better than that of batteries, but less than supercapacitors or SMES (100% depth
of discharge) [Bit98].7

2.6 Technology comparison

In the previous sections, we gave a brief overview of each of the the four main can-
didate technologies for a burst power source, namely electrochemical, electric field,
magnetic field and kinetic energy storage technologies. In this section these four
candidate technologies will be compared with regard to their suitability as a burst
power source.

2.6.1 Compared data

Many comparisons between various energy storage technologies have already been
done in the past [Gen85], [Tho93], [Ter94], [Nel97a], [Zyl98], [Jou99], [Dar99], [Die99],
[Bak99], [Heb02]. It is a daunting task to completely evaluate energy storage tech-
nologies extensively, taking into account all factors. This has not been the aim of this
chapter, but rather to give a brief overview of the main contender technologies from
a burst power applications point of view.

From a literature survey, data for power, energy, specific power, specific energy,
power density and energy density of the most feasible burst power sources were
combined into Figures 2.4, 2.5 and 2.6 [Gen85], [Tho93], [Nel97a], [Bit98], [Jou99],
[Die99].

2.6.2 Power vs energy

According to [Jou99], SMES systems are available with the highest power rating
(1 GW) of the four technologies compared in this chapter. One cannot but won-
der whether the power electronics were included in this high power rating, how-
ever. Flywheel and battery systems come second at a power level of 10 MW and
supercapacitors have the lowest rating at 100 kW8. Battery systems are available
with slightly higher stored energy levels than those of SMES, and both these levels
are two orders of magnitude higher than that of supercapacitors. The flwyheel sys-
tem made by Vista Tech, Inc. is available with a very high amount of stored energy
(1 MWh).

6In practice, 75% is usually used in flywheels. A 75% drop in energy corresponds to half the maximum
rotational speed.

7The power electronics not only limits the depth of discharge in flywheel systems, but also in SMES
systems, battery systems, etc. It is therefore questionable whether the 100% depth of discharge of SMES
systems that Bitterly claims, is really used in practice.

8This was what was found to be commercially available at the time of this writing. Of course several
of these modules may be placed in series or parallel to increase the power level.
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2.6.3 Power density vs energy density

Even less data are available on the power and energy densities of energy storage
systems than on the specific quantities. Enough data could be gathered to construct
Figure 2.5, however, which gives ample information to identify trends.

Batteries

Data from only one battery system manufacturer has been plotted in Figure 2.5;
data of the high-power Li-ion systems of Saft, which can achieve power densities
of 1.4 MW/m3. As these are electrochemical energy storage systems, one would ex-
pect them to have a very high energy density, which they do, as evidenced from Fig-
ure 2.5. These systems have the highest energy density just as in the case of specific
energy, but flywheels already come quite close to the values achieved by electro-
chemical technologies. The flywheel data is for complete systems and was obtained
from [Mar99].

Capacitors

The supercapacitor data used in Figure 2.5 was obtained from Siemens & Matshushita
Components GmbH [Die99], for their 42 kJ and 150 kJ modules. The data on alu-
minium electrolytic capacitors was also obtained from Siemens & Matshushita Com-
ponents GmbH [Pow] for their 6800 µF–33000 µF range. Supercapacitors do not
score high on either axis of Figure 2.5, but the figures used are for complete mod-
ules, and in the case of the 150 kJ module, even electronic voltage sharing and
protection circuitry are included. Aluminium electrolytic capacitors have a very
high power density (around 650 kW/m3) but at very low energy densities, typi-
cally ∼100 Wh/m3. Metal-film capacitors have power densities higher than those of
electrolytics, at lower energy densities due to the lower capacitance densities.

SMES

Data onf a single SMES system was available; the 2.7 MJ system made by American
Semiconductor, which was also plotted. It can be seen that with the exception of
electrolytic capacitors, it has the highest power density of the technologies shown in
Figure 2.5. The data is for the electromagnet only, however, while the other technolo-
gies are listed as complete systems. When the total system is considered, the block
will tend to move both to the left and downward, but the basic trend will remain
the same, i.e. that SMES has the highest power density and the third highest energy
density.
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Composite flywheels

Composite flywheels perform worse with respect to energy per unit volume than the
energy per unit mass, as can be seen from Figures 2.5 and 2.6. This can be explained
from Table 2.1, where it can be seen that these composite flywheels require less mass
but more volume for the same amount of stored energy than metal flywheels. This
trend is also true for power: the power density of composite flywheels is worse
relative to the other technologies than in the case of specific power.

2.6.4 Energy density comparison from first principles

The energy density of an electric energy storage device can be written from (2.5) as:

êe,v =
εrε0Ê2

2
, (2.18)

where Ê is the peak electric field intensity between the plates. Similarly, from (2.6)
and (2.12) the energy densities of a magnetic storage device and a kinetic storage
device can be written as:

êm,v =
B̂2

2µ0
, (2.19)

and

êk,v =
ρv̂2

c

2
, (2.20)

where B̂ is the peak magnetic flux density in the magnetic storage device and and v̂c

is the peak circumferential speed of the kinetic storage device. According to Driga
[Dri93], from (2.18), (2.19) and (2.20), the stored energy ratios for the same volume is
êe,v : êm,v : êk,v = 1 : 10.9 : 131.9; this is for:

• Electric: Ê = 1.6 × 104 V/mil, εr = 5ε0;

• Magnetic: B̂ = 12 T;

• Kinetic:9 v̂c = 1150 m/s, ρ = 1800 kg/m3

Thus, the kinetic and magnetic energy storage devices store 131.9 and 10.9 times
more energy than the electric energy device per cubic meter, respectively. This trend
is confirmed by Figure 2.5, where flywheels have the highest energy density second
only to that of batteries, followed my SMES and lastly by supercapacitors.

2.6.5 Summary: Power density vs energy density

Summarily, the following comments can be made regarding Figure 2.5:

9The high circumferential speed that Driga uses here suggests that these are projected values.
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• Electrochemical technologies tend to have the highest energy densities of the
compared technologies, but their power densities are limited due to the high
impedance of wet-dry contact areas.

• Electric field technologies store less energy per cubic meter than the other three
technologies, but have the highest power density.

• Magnetic field energy storage technologies store less energy per cubic meter
than kinetic energy storage systems, but more than electric field technologies.
They deliver more power per cubic meter than any of the other technologies
except the electric field technologies.

• Due to the volume-inefficiency of composite flywheels as shown in Table 2.1,
kinetic energy storage systems are second to batteries in stored energy per cu-
bic meter, but higher than magnetic and electric field energy storage. They are
third in power density, which is (similar to specific power) mainly limited by
the electric machine.

2.6.6 Specific power vs specific energy

A comparison between the specific powers and energies of the various technologies
is very difficult because these technologies are so different. For example, a battery
and a supercapacitor have a DC output without any necessary power conversion
while both SMES and flywheels need some form of power electronics to be able to
compare them directly, adding mass to the system. To be really fair in a compari-
son, a system design study would have to be done for each application, choosing the
specifications and comparing the energy storage system plus conversion and control
for that set of specifications. This was not the aim of this study. Instead, an attempt
was made to identify trends in the values and to gain a more qualitative understand-
ing of what the different technologies are capable of.

Batteries

The specific energy of lead-acid batteries is around 30–40 Wh/kg at a specific power
of up to 100 W/kg. Higher specific powers can be obtained, but at a reduced specific
energy, as can bee seen in Figure 2.6.

The Ragone plots10 shown in Figure 2.6 were obtained from [Gen85] and [Nel97a].
The data from [Gen85] is marked with an asterisk for identification. It can be seen
that although conventional lead-acid batteries have undergone some progres during
1985–1997, no major breakthroughs were made in lead-acid technologies except the
Bolder TMF R© battery [Nel97a] and the TNO bipolar lead-acid battery [Kol99].

10The name “Ragone plot” is commonly used in battery technology. It relates specific power to specific
energy.
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The TMF R© battery is capable of achieving specific powers in excess of 4.4 kW/kg
@ 7.3 Wh/kg. In fact, the 1.2 Ah cell is hypothetically expected to reach up to 12–
15 kW/kg @ 3–4 Wh/kg, which corresponds to a discharge time of 1 s at a current
level of 1 kA [Nel97a].

For the bipolar lead-acid battery, specific powers of up to 1 kW/kg at a specific
energy of 8.3 Wh/kg at a laboratory scale have been demonstrated [Kol99]. From
Figure 2.6 it can be seen that it is a good source of burst power for the approximate
region of 3.6–20 s.

The high-power lithium ion technology of Saft (Alcatel) can achieve 1 kW/kg
[Owe99], which is very high for Li-ion batteries and comparable with that achieved
by the TNO bipolar lead-acid technology, but lower than that of the Bolder TMF R©

(4 kW/kg). Lithium and Saft high-energy lithium-ion batteries have higher specific
energies than lead-acid batteries, however. This makes them more suitable for slow-
discharge applications.

SMES

Data on SMES systems is not readily available, and only values for the 2.7 MJ SMES
made by American Superconductor is included in Figure 2.6. It should be noted that
only the electromagnet data is plotted here, which is an unfair comparison, but a
trend is nevertheless observable: SMES systems tend to have a higher specific power
than battery technologies, but are rivalled by composite flywheels. A comparison
taking the complete system mass into consideration would yield even lower specific
powers for SMES.

Capacitors

Second to flywheels only, aluminium electrolytic capacitors have the highest specific
power shown in Figure 2.6, but at very low specific energies, limiting them to high-
power low-energy applications.

Metal-film capacitors have even higher specific powers than those of electroly-
tics (100 kW/kg–1 MW/kg; outside the scale of Figure 2.6) at an even lower specific
energy (< 0.1 Wh/kg). They are thus only suited for very short power pulses.

Figure 2.6 shows that supercapacitors have specific powers (∼4 kW/kg) [Die99]
slightly below that of electrolytic capacitors, and their specific energies are between
those of electrochemical storage devices and electrolytic capacitors. This makes su-
percapacitors a good power source for applications where full discharge is needed
in approximately 1–60 s.

Composite flywheels

The data in Figure 2.6 on flywheels was obtained from [Gen85], [Bit98] and [Mar99].
It can be seen here that composite flywheels have the highest achievable specific
power of all the compared technologies. For instance, 5.6 kW/kg (Trinity Flywheel
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Batteries), 6.3 kW/kg (Satcon Technology Corporation) and 11.9 kW/kg (US Fly-
wheel Systems). Bitterly of US Flywheel Systems projects that the specific power of
flywheel systems can go as high as 30 kW/kg in future, the only limitation being the
electric machine [Bit98]. Moreover, flywheels can have specific energies comparable
with those of batteries, and Bitterly projects up to 200 Wh/kg based on increased
strengths of graphite composites [Bit98].

2.6.7 Summary: Specific power vs specific energy

Summarily, the following comments can be made regarding Figure 2.6:

• Electrochemical technologies tend to have the highest specific energies, but
their specific powers are limited due to the high impedance of wet-dry con-
tact areas.

• Electric field technologies store less energy per kilogram than electrochemi-
cal technologies, but have a lower internal impedance than the former, giving
them a higher specific power.

• Magnetic field energy storage technologies fit into a subset of the area occupied
by electric field technologies in Figure 2.6.

• Kinetic energy storage systems deliver more power per kilogram than any
other energy storage technology considered here and they also compare well
with the high specific energy of batteries.

2.6.8 Other factors

Energy storage technologies may not only be compared in terms of power vs energy,
power density vs energy density, and specific power vs specific energy (Figures 2.4–
2.6), but also in terms of their cost, efficiency, bidirectionality, maintenance, depth of
discharge, cycle life and other factors. A summary of such a comparison is listed in
Table 2.2 [Jou99], [Dar99], [Heb02].

The reasons for the values in Table 2.2 can be explained by the working prin-
ciples of each type of energy storage technology. This was one of the aims of this
chapter. Another aim is to motivate the selection of kinetic energy storage for a hy-
brid electric city bus application. This is done in the next subsection.
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Ref. Item Batteries Fuel cells Capacitors Supercapacitors SMES Flywheels

[Jou99] 100–200 1500 – 500 700–1000 300

[Dar99] ∼75 – – 350–600 300–600 400–500a; 30–100b

[Heb02]

Cost [US$/kW]

50–100c – – – > 300 400–800

Efficiencyd [%] 70–90 40–55 95 90 > 95 > 95

Bidirectionality Very bad None Good Very good Good Very good

Maintenance High – Low Low Low Low

DoD [%] 70 – 100 100 100 95e

[Jou99]

Cycle life < 2000 – > 105 > 106 > 106 > 106

Life [service years] 3–5 – – – ∼20 > 20
Practical time
to hold a charge Years – – – Days Hours

Annual sales [106 $] ∼7000 – – – A few ∼2
Number of US
manufacturers ∼700 – – – ∼10 ∼1

[Heb02]

Technology Proven – – – Promising Promising

Table 2.2: Energy storage technology comparison.

ahigh speed
blow speed
clead-acid
dVon Jouanne et al. [Jou99] does not state which efficiency is meant here. The correct efficiency to compare is of course the turnaround efficiency, measured

in the same domain (electrical).
eusually operated at 75%
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2.7 Selection of the kinetic energy storage technology

for a hybrid electric city bus

The power and energy requirements for the bus11 are 150 kW and 4 kWh, respec-
tively. This is within the listed requirements of power and energy for busses in Ta-
ble 1.1. Looking at Figure 2.4, one sees that SMES, batteries and composite flywheels
are candidate energy storage systems.

Also from Table 1.1, the required energy storage technology should have a spe-
cific power of between 180 W/kg and 400 kW/kg, and a specific energy of 5–30
Wh/kg. From Figure 2.6, SMES does not meet these requirements and therefore
only some battery technologies and composite flywheels remain as candidates. No
requirements for power and energy density are set, but when Table 2.2 is considered,
batteries are eliminated because of their bad bidirectionality, high maintenance and
their low cycle life and lifetime. This leaves composite flywheels, which is not the
cheapest technology, but nevertheless the one chosen for this application. It is envis-
aged that the high initial cost of the flywheel system will be offset over time because
of its low maintenance cost and very high reliability.12

2.8 Summary

It was said in Chapter 1 that the goal of this thesis is to describe the design of an
electrical machine for a flywheel energy storage system. This system is to be used
for load levelling of hybrid electric city busses and light-rail vehicles. This chapter
showed how flywheel (kinetic) energy storage systems fare against other contender
technologies. The emphasis throughout the chapter was on the power delivery ca-
pabilities of each of the four energy storage technologies under consideration.

Sections 2.2–2.5 discussed four energy storage technologies as possible sources
of high power delivery for short durations: They were:

1. electrochemical energy storage: batteries and fuel cells (Section 2.2);

2. electric field energy storage: metal-film capacitors, aluminium electrolytic ca-
pacitors and supercapacitors (Section 2.3);

3. magnetic field energy storage: superconducting electromagnets (Section 2.4);
and

4. kinetic energy storage: flywheels (Section 2.5).

11If the requirements for a hybrid electric car instead of a bus would have to be met, supercapacitors
would be an increasingly viable candidate for use as the energy storage technology.

12Once again, as with many of the other criteria, the reliability of a flywheel energy storage system is
limited by the power electronics.
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In Section 2.6 these four energy storage technologies were compared, and Sec-
tion 2.7 concluded the chapter with the motivation of the choice of a flywheel for a
hybrid electric city bus.

In Chapter 3, a flywheel energy storage system is introduced for this hybrid city
bus application. The main challenge in such a system is the power level, and it will
be shown that the most important factor influencing this is the electrical machine
design. Such an electrical machine was designed for the flywheel. Chapter 3 intro-
duces this electrical machine. In the rest of the thesis, the design will be discussed in
more detail.
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CHAPTER 3

Introduction of the EµFER machine

3.1 Introduction

In Chapter 2, we motivated the choice of a kinetic energy storage system for a high-
power, medium-energy storage application (power buffering in a hybrid electric ve-
hicle). This chapter focusses on such flywheel energy storage systems, particularly
with the aim of maximizing their power delivery capability. It takes a look at drive
system topologies (Section 3.2), converter options (Section 3.3), and the selection of
the electrical machine type (Section 3.6).

In Section 3.4, it will be shown that the power delivery capability of a flywheel
energy storage system is mainly limited by the electrical machine design, whereafter
Section 3.5 explains that the rest of the thesis will focus on the electrical machine.
Section 3.6 takes a brief look at different possible machine types.

A machine has been designed for application in a flywheel energy storage sys-
tem for a hybrid electric city bus and it has been constructed by the Centre for Con-
cepts in Mechatronics (CCM) B.V. in the Netherlands.

Section 3.7 describes this flywheel energy storage system, called EµFER, in gen-
eral. This is followed by a more detailed description of the designed electrical ma-
chine, which is the focus of the majority of the rest of this thesis. Section 3.8 summa-
rizes the chapter.

3.2 Drive system topologies

The electrical machine to be introduced in Section 3.7 is intended for application in
hybrid electric vehicles like light rail vehicles and city busses. Several topologies
are possible for the drive systems of hybrid electric vehicles. It is, however, not
the purpose of this thesis to provide a thoroughly detailed overview of hybrid drive

37



38 Chapter 3

system topologies, but rather to state briefly into which system the electrical machine
designed in this thesis fits.

Figure 3.1 shows the two main options for hybrid electric vehicle drive systems:
series and parallel systems [Mag00, Jon02]. Both series and parallel hybrid systems
may be configured in several different ways. Figure 3.1 shows only one possible
configuration for each.

In the series hybrid topology of Figure 3.1(a), the traction is obtained by one
drive shaft connected to the drive axle. Thus the energy flow of the flywheel system
is added electrically to the drive shaft. One distinct advantage of the series hybrid
topology is that the internal combustion engine (ICE) and traction machine can be
mounted separately. In city busses, this makes it possible to have a low floor [Jon02].
Another advantage of the series hybrid topology is that the ICE may be run at the
range of rotational velocities where it is most efficient, since there is no mechanical
connection to the load.

In the parallel hybrid topology of Figure 3.1(b), the ICE is directly connected to
the drive shaft through a gearbox. Thus, in contrast to how power is added in the
series hybrid system, namely electrically, in the parallel hybrid system it is added
mechanically. The parallel hybrid requires the ICE, gearbox and the traction machine
to be mounted closely together.

When looking at the number of power conversion stages in the two topologies,
one can observe the following:

• The series hybrid topology has three power conversion stages during nominal
power transfer from the shaft of the ICE to the drive shaft, while the parallel
hybrid topology has one.

• For power flow from the shaft of the ICE into the flywheel, the series hybrid
topology requires three power conversion stages, and the parallel hybrid four.

• For power flow from the flywheel to the drive shaft, both the series hybrid and
parallel hybrid topologies need four power conversion stages.

Not all power conversion stages have the same losses, however, meaning that
merely counting the number of power conversions is not sufficient for a thorough
comparison. Such a comparison is beyond the scope of this thesis. The purpose of
this paragraph was simply to serve as an orientation and background to see where
the EµFER electrical machine fits in. The bus in which it is used, utilizes the series
hybrid topology.

3.3 Converter options

It is practical to use a DC bus in the chosen series hybrid system like the one shown
in Figure 3.1(a). Thus the generator connected to the ICE is either a DC machine, or
an ac machine with a controlled or uncontrolled rectifier. This part of the system is
not under consideration in this thesis.
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Figure 3.1: Drive system topologies: (a) series hybrid; (b) parallel hybrid. (ICE = in-

ternal combustion engine; EM = electrical machine; FW = flywheel; PE =

power electronics; GB = gearbox.)

The practical options for the power converter connecting the flywheel electrical
machine in Figure 3.1(a) to the DC grid can be divided into two broad categories:
current source inverters (CSIs) and voltage source inverters (VSIs). Which of the two
should be chosen for a flywheel drive depends on:

• the losses in the converter itself;

• the losses that the converter induces in the machine; and

• the electromagnetic torque or power output that can be realised with the con-
verter for a specific machine.

The losses of the converter itself and those it induces in the machine will be
discussed in Chapters 6, 7 and 8, after a method for calculating them has been devel-
oped.

Concerning the power level, one can easily show that the VSI is a better choice
by considering a simple per-phase equivalent circuit of the machine, as the one
shown in Figure 3.2(a). The voltage equation of Figure 3.2(a) is:

Ep = Us + jXs Is. (3.1)

A phasor diagram of the machine of Figure 3.2(a) working at a lagging power fac-
tor (typical for a CSI) is shown in Figure 3.2(b). The power output of the circuit of
Figure 3.2(a) is given by the well-known equation:

P =
3 Us Ep

Xs
sin δ, (3.2)

where Us and Ep are the rms values of the phasors Us and Ep, respectively, and δ is
the power angle.

Figure 3.3 shows several more phasor diagrams. Figures 3.3(a)–(c) shows three
operating strategies or control methods with the same no-load voltage Ep:
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Figure 3.2: (a) Equivalent circuit of a PMSM; (b) phasor diagram for a lagging power

factor.

Figure 3.3(a): lagging power factor; Figure 3.3(b): unity power factor; and Fig-
ure 3.3(c): Is in phase with Ep.

The lagging power factor case of Figure 3.3(a) is the mode of operation of the
machine connected to a CSI. Due to the working principle of thyristors, the voltage
across it must be positive before the current can start flowing after a gate pulse. This
means that the current through a thyristor always lags the voltage, and this also ap-
plies for the CSI. There is always reactive power flow in such a system, necessitating
an increase in the ratings of the semiconductors. In diode rectifiers, or CSIs with zero
firing angle, this phase lag is typically small enough to be neglected; Figure 3.3(b)
shows this situation.

When the current Is is controlled (by a VSI, or uncontrolled in a diode bridge)
such that it is in phase with the terminal voltage of the machine Us, unity power
factor is achieved, as shown in Figure 3.3(b). In this case, no reactive power flows
from the converter to the machine or vice versa.

In Figure 3.3(c), another control strategy is shown. Here, the current Is is con-
trolled to be in phase with the no-load voltage of the machine Ep. In this case, the
current leads the terminal voltage and the machine thus appears capacitive to the
converter. The control strategy of Figure 3.3(c) can only be achieved with a VSI since

(a) (b)                                                  (c)

d

jX  Is sIs

Us

Ep

jX  Is s

Is

Us

Ep

d f-=df- jX  Is s
Is Us

Ep

Figure 3.3: Phasor diagrams for the same no-load voltage: (a) lagging power factor;

(b) unity power factor; (c) Is in phase with Ep.
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the current leads Us. The VSI consists of controllable switches like IGBTs or GTOs
and therefore the device current can lead its voltage.

It can be seen from Figure 3.3(a) that in the lagging power factor case, by in-
creasing the stator current (this also changes the power factor and the load angle),
the power output will collapse after a certain stator current value. The same is true
for the unity power factor case in Figure 3.3(b), where a maximum power output is
reached at δ = 45◦. It can be seen from Figure 3.3(b) that Us = Ep cos δ, which gives
for the power output of this case, from (3.2):

Pisus
=

3 E2
p

Xs
cos δ sin δ. (3.3)

The best control strategy of the above three for maximizing the power level for
the same current between Ep and Us is the case where the current Is is controlled to
be in phase with Ep. In this case, theoretically no maximum power is reached for

increasing δ. This can be seen from the fact that Us =
Ep

cos δ from Figure 3.3(c). Thus
the power output of the converter/machine for this control strategy is equal to:

Pisep
=

3 E2
p

Xs
tan δ. (3.4)

Equation (3.4) shows that the power gets asymptotically larger with increasing δ,
and does not reach a maximum. The asymptote is at δ = 90◦. Figure 3.4 shows
equations (3.3) and (3.4) normalised to 3E2

p/Xs. From Figure 3.4, one sees that the

maximum power output of the unity power factor control strategy is 3
2 E2

p/Xs at δ =

45◦. At the same power angle, the power output of the control strategy where Is is
in phase with Ep is 3E2

p/Xs, twice that of the unity power factor case. This proves
that this control strategy is able to withdraw/supply the highest power from/to the
machine.1

To summarize, a CSI always results in a lagging power factor (for zero firing
angle this lag is very small, i.e., only the commutation angle), which limits the max-
imum power that can be extracted from the machine. When a VSI is used, the unity
power factor control strategy results in a higher power output than when a CSI is
used. However, the control strategy that controls the stator current to be in phase
with the no-load voltage results in the highest possible power extracted from the
machine. Another, simpler, way to see this is to write the power output directly in
phasor notation:

P = 3 Ep I∗s , (3.5)

where I∗s is the complex conjugate of Is. It may be seen directly from (3.5) that the
maximum power for a constant value of Is is reached when Ep is in phase with Is.

2

1There is, of course, an effect on Us in this control strategy: it steadily increases with increasing Is. This
cannot be done without limit, since at high Us, the machine isolation might break down.

2By minimization of the losses, or maximizing the efficiency, one arrives at the same result.
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Figure 3.4: Normalized power output of two control strategies possible with a VSI:

where Is is in phase with Ep (solid line) and unity power factor (dotted

line).

3.4 Energy and power limitations of a flywheel energy

storage system

An important fact regarding flywheel machines is that the energy storage capacity is
only limited mechanically, while the power delivery capabilities are limited mainly
by the design of the electrical machine. This can be seen from (2.17), showing that
the specific energy of the flywheel is a function of three mechanical parameters: the
shape factor K, the minimum tensile strength σmin for a given angular velocity ω,
and the mass density ρ of the flywheel material. The electrical machine and the
power electronics therefore do not play a role in the energy stored in the flywheel.
(The rotor does add to the mass moment of inertia of the flywheel, but it contributes
much less than the flywheel itself.)

On the other hand, the power level (both deliverable and absorbable) of such
a system depends more on the mechanical properties of the flywheel than on the
power electronics converter, the electrical machine and their interaction. Therefore
one can say that the system’s energy is mainly limited mechanically and its power is
mainly limited electromagnetically and by the power electronics.

Thus, in order to increase the power level of such a system, one must focus
on the design of the electrical machine and the power electronics converter. In Sec-
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tion 3.3, it has been shown that the power level of a flywheel energy storage system
can be increased by using a voltage source inverter (VSI) rather than a current source
inverter (CSI). Furthermore, the achievable power level of a VSI is a direct function
of the voltage and current rating of the switching devices used, the converter layout,
and the maximum junction temperature of the switches. The switching losses can
be reduced by utilizing resonant techniques to achieve soft switching of the devices.
Furthermore, careful converter layout techniques will limit the stray impedances to
a minimum. This only leaves the problem that the voltage and current rating of the
switching devices of the converter limit its power capability, but this is an economic
problem rather than one with the converter design. This is in contrast to the case
of the electrical machine, where the design mainly determines the maximum power
level that can be extracted from it.3

This means that the greatest challenge in increasing the power level of the com-
plete system is the electrical machine design, a fact that has also been confirmed by
[Bit98].

3.5 The focus of the rest of this thesis: The electrical

machine

Up till now, this thesis had quite a broad scope. This scope is significantly narrowed
from this section onwards however to include only the electrical machine. The rea-
son for this is that the machine needed for the energy storage flywheel is a challeng-
ing one requiring special design and analysis techniques. The design requirements
are:

• high power;

• low loss;

• low no-load loss; and

• high speed.

The choice of narrowing down the scope to the machine is strengthened by the ar-
gument in the previous section and [Bit98].

3As in the case of the converter, this is also only true up to the point where the material properties of
the machine become the main limitation (e.g. the breakdown voltage of the conductors’ insulation), at
which stage improving the design will not lead to a higher power level anymore. Unlike in the case of the
converter, however, much more may be achieved with respect to the machine design before the material
limitations are felt.
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3.6 Machine type selection

3.6.1 Introduction

In this section, electrical machine types are considered, with the emphasis on high-
power energy extraction from energy storage flywheels. The mechanical and electri-
cal requirements of the machine are discussed, whereafter a suitable machine type
and topology are selected.

3.6.2 Mechanical requirements

Figure 2.3 shows that the best flywheel shape in terms of the shape factor is the Laval
disk. As discussed in Chapter 2, however, this shape (or any shape with K > 0.5)
requires an isotropic material like steel. When a composite material is chosen, one
sees from Table 2.1 that the resulting flywheel requires 2–5 times less weight than
a metal flywheel storing the same amount of energy, albeit at a larger volume. The
shape requirement of the composite flywheel becomes an approximation of the thin
rim, as shown in Figure 2.3. Since this flywheel shape results in a fairly large “hole”
in the centre, this space might as well be used for the electrical machine, i.e., the
machine has an external rotor construction.

Further mechanical boundary conditions include the rotor iron outer radius
(carbon fibre inner radius) due to the strength of the fibre, and the flywheel’s ax-
ial length. The latter is quite short, resulting in a fairly flat machine. In spite of this
fact, a radial flux machine is chosen (Chapter 2 also showed that mechanically, a
radial flux topology is a better choice).4

3.6.3 Electrical requirements

The electrical requirements of the machine were listed in Section 3.5.

3.6.4 Machine type comparison

Acarnley et al. compared machine types for a flywheel [Aca96], as did Hofmann and
Sanders [Hof96]. Table 3.1 lists a summary of these comparisons. It lists the advan-
tages and disadvantages of synchronous reluctance, asynchronous and permanent-
magnet synchronous machines (PMSMs).

The greatest advantage of the synchronous reluctance machine is that there is no
flux in the rotor at no load, and therefore ideally zero losses. The torque density of
this machine type is lower than that of the PMSM, however. The tooth ripple effects
during load can also cause substantial rotor loss at load. The windage losses will
also be very high for a machine rotating at 30 000 rpm, although this disadvantage
may easily be overcome by filling the rotor slots with nonmagnetic material.

4For discussions of axial flux machines in flywheels, see [Aca96] and [Sah01].
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Synchronous reluctance

Advantages • Singly excited: negligible iron losses at no-load;
ideal case: no rotor losses

• Cheap rotor construction

Disadvantages • Solid (non-laminated) rotor: Ld/Lq low ⇒ low power
factor and low torque density
• Tooth ripple effects: high rotor eddy current losses
• Windage losses (not such a problem in the EµFER machine
since it rotates in a low pressure atmosphere)

Asynchronous

Advantages • Cheap rotor construction
• Rotor suitable for disk geometry (metal flywheels)

Disadvantages • Low power factor
• High rotor losses
• Typically a low torque density

PMSM

Advantages • High torque density
• Low rotor losses

Disadvantages • Magnets must be contained (axial flux topologies)
• Demagnetization
• Permanent magnets’ dependency on temperature
• High magnet cost
• High no-load losses

Table 3.1: Flywheel machine type comparison [Aca96, Hof96].

A permanent magnet synchronous machine is chosen above an asynchronous
machine because of the higher torque per unit volume and the lower rotor losses of
the PMSM. It is very important to have the losses on the rotor as low as possible
since the rotor rotates in vacuum at very high speed, which makes it difficult to cool.

3.6.5 The chosen machine type and topology

The chosen machine type for the flywheel is thus the PMSM, the main reasons being
its high specific torque/torque density and the low rotor losses. The list of disad-
vantages in Table 3.1 may seem intimidating, but they are solvable. Magnet contain-
ment is no problem in external rotor, radial flux topologies since the magnets are
supported by the rotor iron. It does have an influence on the rotor iron’s mechani-
cal properties, however, and on those of the carbon fibre. This is because the rotor
iron carries the weight of the magnets and the shielding cylinder (if present), and
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the carbon fibre carries the weight of the rotor iron, magnets and shielding cylinder.
With careful design this is a challenge that can be met; it has been met in the past by
several flywheel PMSM manufacturers. Demagnetization and magnet temperature
problems may also be solved by good design and cooling of the rotor. High no-load
losses may arise because the permanent magnets’ flux cannot be switched off during
no load, causing high dB/dt in the stator winding and iron, inducing eddy current
losses. This is also a problem that can be reduced by good design, and it will be
addressed in detail later in the thesis.

One way of reducing the no-load loss in the stator is to make the stator winding
slotless and to use Litz wire stator conductors. Slotted and slotless stators have been
compared in [Ark92] with respect to induced eddy current loss in the stator conduc-
tors and the stator iron. It was shown that if the diameter of the Litz wire strands is
chosen appropriately, the losses can be significantly reduced.

In summary, the requirements of the electrical machine may now be written as:

• a flywheel shape approaching the thin rim is required ⇒ external rotor ma-
chine;

• although fixed dimensions require the machine to be quite flat, the aspect ratio
still makes a radial flux topology viable;

• low rotor loss ⇒ use of a shielding cylinder on the rotor;

• high power density ⇒ PMSM; and

• low no-load loss ⇒ slotless, laminated stator with Litz wire conductors and
very thin laminations.5

3.7 The EµFER machine

3.7.1 Introduction and system description

The EµFER flywheel energy storage system was initiated by CCM B.V. for use in
large hybrid electric vehicles like city busses for power buffering. Figure 3.5 shows
the drive system of the EµFER system for use in a hybrid electric city bus. The LPG
internal combustion engine turns a DC generator connected to a DC grid, which
forms the centre of the system. From the DC grid, the DC traction machine that
turns the driving axle is fed through a DC/DC converter. The flywheel machine
is also connected to the DC grid, through either a VSI or a CSI. In Figure 3.5, the
average power is supplied by the diesel engine, which also charges the flywheel up
slowly. During peak power demand, as in acceleration of the bus from standstill, the
higher power level is supplied by the flywheel to the traction motor via the DC bus.

5The slotless stator reduces the power density listed in the previous requirement, but the density is
still acceptable.
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During braking, the kinetic energy of the city bus is converted into electrical form by
the traction machine, thereby charging the flywheel up again (regenerative braking).

The specifications of the EµFER machine were fixed at: 150 kW nominal power
(300 kW peak) and 7.2 MJ (2 kWh) usable stored energy, with the no-load losses
as low as possible. The energy to power ratio of the EµFER system is 48 s when
delivering/absorbing nominal power.

EM EM

VSI          or CSI

FW

Figure 3.5: EµFER flywheel energy storage system for use in a hybrid electric city bus.

3.7.2 The use of a shielding cylinder

The effect of a shielding cylinder on the rotor losses in permanent-magnet machines
has been investigated in [Vee97], [Abu97], [Pol98], [Zhu01a] and [Zhu01b], among
others. This cylinder shields the permanent magnets and the rotor iron from high-
frequency magnetic fields originating from the stator currents. One general conclu-
sion was that for low rotational speeds, the addition of a shielding cylinder increases
the losses, while for high rotational speeds, the addition of a shielding cylinder re-
duces them. In [Pol98], it is furthermore recommended that when a solid rotor iron
is used, a shielding cylinder should always be used to reduce the rotor losses.

This can be seen from the skin depth:

δ =

√
2

ωσµ
, (3.6)

where ω is the frequency of excitation, σ is the conductivity and µ the permeability
of the material under consideration. At the same frequency, the ratio between the
skin depth of iron and copper is:

δFe

δCu
=

√
σCu

σFe

√
1

µr,Fe
, (3.7)

where µr,Fe is the relative permeability of iron.
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The conductivity of copper is approximately 6.18 times larger than that of pure

iron at room temperature, and therefore
√

σCu
σFe

= 2.49. Depending on the processing,

the permeability iron can be anywhere between 1000 to 5000 times higher than that of

copper. Taking the number of 1000, we have:
√

1
µr,Fe

= 0.0316. Thus, δFe
δCu

= 0.0787, or

the skin depth in iron, is 12.7 times smaller than that in copper at the same frequency.
Furthermore, the resistance of a rectangular conductor is: R = l/(σA), where

l is the current’s path length, σ is the conductivity of the material and A the area
through which the current flows. The ratio of the resistance of a rectangular iron
conductor and that of an equivalent copper conductor is:

RFe

RCu
=

σCu

σFe

δCu

δFe
=

√
σCu

σFe

√
µr,Fe = 2.49 × 31.6 = 78.7 (3.8)

from (3.7).
The metal of which the shielding cylinder is made can also be another nonmag-

netic material like aluminium. This could have mechanical advantages, but the elec-
trical properties are worse. More precisely, at room temperature, the conductivity of
copper is 1.59 times higher than that of aluminium. Thus the ratio of the resistance
of a rectangular aluminium conductor and that of an equivalent copper conductor is
from (3.8):

RAl

RCu
=

√
σCu

σAl
= 1.26. (3.9)

In the following discussion, the current is inductance limited; a change in the
material’s resistance then corresponds to a change in the induced loss in that ma-
terial. From (3.8) it can be seen that there is a drastic reduction in induced rotor
loss when the currents arising from induced voltages are dissipated in copper rather
than in iron. From (3.9) it can be seen that this reduction is less when an aluminium
shielding cylinder is used, but that it is still very significant. In either case, whether
copper or aluminium is used, a shielding cylinder is required.

3.7.3 General machine description

Combining the facts discussed in Sections 3.6.5 and 3.7.2 above, the electrical ma-
chine becomes as that shown in Figure 3.6. On the inside of the stator iron is an
electromagnetically inactive area that is used for bearings, cooling and other auxil-
iaries. The stator iron consists of a slotless cylinder that is laminated, i.e., it consists
of very thin, closely stacked rings. On its outside, the stator winding region is lo-
cated, which is described in the next section. On the outside of the mechanical air
gap the electromagnetic shielding cylinder is located, followed by the permanent-
magnet array and the solid rotor iron yoke. On the outside of the rotor iron, the
carbon fibre flywheel is mounted.
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Figure 3.6: EµFER machine cross section with flywheel.

3.7.4 The stator winding distribution

General description of the winding

The stator winding distribution was designed to have a low space harmonic con-
tent, i.e., to closely approximate a sinusoidal winding distribution. In Figure 3.6,
the winding region is the third region from the inside. The winding has two layers
and is in fact constructed as a slotted structure, but the slots are made of a synthetic
nonmetallic material. The second layer is short pitched by one slot, thus forming a
1-2-2-1 winding distribution. The winding parameters are:

• number of phases: m = 3;

• number of pole-pairs: p = 2;

• number of slots per pole per phase: q = 3;

• number of slots: s = 2mpq = 36;

• slot-opening angle: ϕso = 0.8(π/18);

• pitch angle: ϕpitch = π/18; and

• 1 conductor per slot per layer

Figures 3.7(a) and (b) show photographs of the EµFER stator winding during
the winding process, and Figure 3.7(c) shows a close-up of the end windings of the
completed stator winding.
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(a) (b)

(c)

Figure 3.7: Photographs of the EµFER stator winding.

A mathematical description of the winding distribution

The EµFER machine was designed based on analytical field calculations. This choice
will be motivated thoroughly in Chapter 4. To start such an analytical design process,
we used the mathematical description of the stator winding shown in Figure 3.7.
Since it is a three-phase winding, this may be done on a per-phase basis. For phase
a, the winding distribution (the number of conductors per radian), can be written as
the Fourier series:

nsa(ϕ) =
∞

∑
k=1,3,5,···

n̂s,k cos(kpϕ), (3.10)

where k is the space harmonic, and the Fourier coefficient n̂s,k is half the number of
turns of the k-th space harmonic Ns,k. This can be seen by integrating (3.10) over half
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a full pitch:

1
2 Ns,k = kp

π/2kp∫

0

n̂s,k cos(kpϕ) dϕ = n̂s,k. (3.11)

The number of turns of the k-th space harmonic is related to the real number of
turns N by [Sle92]:

Ns,k = 4
π kw,kN (3.12)

where kw,k is the winding factor for the k-th space harmonic of the winding. (Wind-
ing factors are reviewed in Appendix A.) Figure 3.8 shows a linear depiction of the
stator winding distribution and a plot of the function nsa(ϕ) as given by equation
(3.10).

By making use of the fact that cos(−kpϕ) = cos(kpϕ), equation (3.10) can be
rewritten as:

nsa(ϕ) =

k=··· ,−23,−17,−11,−5,1,7,13,19,25,···︷ ︸︸ ︷
∞

∑
k̈=−∞

n̂s,6k̈+1 cos
[
(6k̈ + 1)pϕ

]
+

k=3,9,15,21,27,···︷ ︸︸ ︷
∞

∑
k̇=0

n̂s,6k̇+3 cos
[
(6k̇ + 3)pϕ

]
. (3.13)

where k̈ ∈ Z and k̇ ∈ Z
+ are not the space harmonic anymore, but related to it as

listed in Table 3.2, i.e.:

k = 6k̈ + 1 (3.14)

for the double-sided Fourier series, and:

k = 6k̇ + 3 (3.15)

for the single-sided Fourier series.
It can be seen that the double-sided term in (3.13) represents all the non-triplen

space harmonics and the single-sided term the triplens.
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Figure 3.8: A linear depiction of the winding distribution of the flywheel machine of

Figure 3.6. The winding distribution of phase a, given by equation (3.10),

is also shown.
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k̈ −4 −3 −2 −1 0 1 2 3 4
Double-sided

k = 6k̈ + 1 −23 −17 −11 −5 1 7 13 19 25

k̇ 0 1 2 3 4
Single-sided

k = 6k̇ + 3 3 9 15 21 27

Table 3.2: Relationship between k̇, k̈ and the space harmonic k.

The expressions for phases b and c are similar to (3.13), but shifted in phase by
−2π/3 and −4π/3, respectively. Thus, for the three-phase winding distribution, we
have:

nsa(ϕ) =
∞

∑
k̈=−∞

n̂s,6k̈+1 cos
[
(6k̈ + 1)pϕ

]
+

∞

∑
k̇=0

n̂s,6k̇+3 cos
[
(6k̇ + 3)pϕ

]
, (3.16a)

nsb(ϕ) =
∞

∑
k̈=−∞

n̂s,6k̈+1 cos
[
(6k̈ + 1)(pϕ − 2π

3 )
]
+

∞

∑
k̇=0

n̂s,6k̇+3 cos
[
(6k̇ + 3)(pϕ − 2π

3 )
]
,

(3.16b)
and

nsc(ϕ) =
∞

∑
k̈=−∞

n̂s,6k̈+1 cos
[
(6k̈ + 1)(pϕ − 4π

3 )
]
+

∞

∑
k̇=0

n̂s,6k̇+3 cos
[
(6k̇ + 3)(pϕ − 4π

3 )
]

(3.16c)

3.7.5 The mechanical construction

The machine and flywheel is mechanically constructed as shown in Figure 3.9, an
axial cross section of the complete flywheel and electrical machine. The containment
unit, flywheel, rotor, stator and the bearing unit are clearly shown.

3.7.6 The permanent-magnet array

In the 1980s, K. Halbach [Hal80], [Hal85] described a new approach for obtain-
ing certain specified magnetization patterns with permanent magnets. The mag-
netic structures resulting from his work soon became known as Halbach arrays.
These structures were first developed as elements in particle accelerators and ad-
vanced synchrotron light sources, but their potential for use in permanent-magnet
machines was soon realized. See, among others, Marinescu and Marinescu [Mar92]
and Trumper et al. [Tru93].

Figure 3.10 shows three different permanent-magnet arrays in linear form. The
darker coloured region depicts the rotor iron and the lighter coloured region the per-
manent magnets; the arrows indicate the direction of magnetization. Figure 3.10(a)
shows a standard radial array with a 100% magnet span for illustrative purposes. By
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Figure 3.9: An axial cross section of the complete flywheel and electrical machine.

dividing every magnet into two equal parts and rotating every second magnet clock-
wise by 90◦, the discrete Halbach array with two segments per pole of Figure 3.10(b)
is obtained. Dividing each of these magnets in half again and rotating magnet num-
bers 2, 4, 6, · · · clockwise by 45◦, the discrete Halbach array with four segments per
pole of Figure 3.10(c) is obtained.

Halbach arrays with a different number of segments per pole, including uneven
numbers like 3 or 5, are obtained in a similar manner as the above. Continuing
the magnet dividing and rotating procedure ad infinitum so that there are an infinite
number of segments per pole, the ideal Halbach array is obtained. This array has an
ideal sinusoidally rotating magnetization vector [Ata97].

Halbach arrays result in a higher flux density in the air gap than standard radial
arrays [Mar92], [Tru93], [Ata97]. This may potentially increase the torque & power
density of the machine, and was therefore worth investigating for this project. For
the thesis, three permanent-magnet arrays were investigated: the conventional ra-
dial array, a discrete Halbach array with two segments per pole, and an ideal Hal-
bach array as a theoretical limit.

Traditionally, in Halbach arrays, the polar magnet spans are adjusted so that
each magnet takes up equal space. Therefore, a discrete Halbach array with two
segments per pole will customarily have radial magnets filling up 50% of the cir-
cumference, and tangential magnets filling up the other 50%.

The 80/20 discrete Halbach array investigated in this thesis is formed by mak-
ing the span of the radial magnets such that they fill 80% of the circumference; the
remaining 20% is used for the tangentially magnetized magnets, appropriately ori-
ented for flux concentration on the inside of the array. In Chapter 8, the effect of
varying the pole arc in the radial and discrete Halbach arrays will be investigated.
For the discrete Halbach array with two segments per pole, the variation in pole arc
corresponds to a variation of the 80/20 ratio introduced here.
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Figure 3.10: Cartesian versions of three different permanent-magnet arrays.

3.8 Summary

In this chapter, flywheel energy storage systems were discussed with the aim of
maximizing their power delivery capability. Two of the most important drive sys-
tem topologies were discussed in Section 3.2, followed by possible power converters
(Section 3.3) and electrical machines (Section 3.6). It was mentioned in Section 3.4
that the energy storage capacity of a flywheel energy storage system is mainly lim-
ited by the mechanical properties and the construction of the flywheel itself, while
the power delivery capability is limited mainly by the power electronics and electri-
cal machine design.

Section 3.5 stated that the rest of this thesis focusses on the electrical machine
design of such a system, after which Section 3.6 briefly investigated the machine
type options.

Section 3.7 introduced the EµFER flywheel energy storage system, focusing on
its electrical machine. The requirements of the EµFER machine discussed in Sec-
tion 3.6 were realized into the chosen machine type and topology: an external ro-
tor, radial flux PMSM with a shielding cylinder. A mathematical description of the
winding distribution, which will be used in the rest of the thesis, was introduced.
Section 3.7 also showed an axial cross section of the flywheel and electrical machine,
showing the construction clearly. Section 3.7 closed by motivating the investigation
of Halbach arrays to potentially increase the power density of the machine. The
80/20 discrete Halbach array with two segments per pole and the ideal Halbach ar-
ray were also introduced in addition to the customary radial array. They will be
extensively investigated in the rest of the thesis. Among other things, Chapter 8 will
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take a look at the effects of varying the magnet span ratio of the radial and discrete
Halbach arrays.

In the subsection describing the winding mathematically, Section 3.7, it was said
that the chosen method of design in this thesis is the use of analytical field calcula-
tions. An outline of the analytical method to solve for the magnetic field and other
interesting derived quantities will be discussed next in Chapter 4.
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CHAPTER 4

Outline of an analytical approach to the design of a

slotless PMSM

4.1 Introduction

In the previous chapter, the EµFER machine was introduced for our case study. In
the next four chapters, an analytical model will be derived for the design and anal-
ysis of PMSMs with air gap windings, including the effect of the eddy currents in
the shielding cylinder. The analytical model will be applied to this EµFER machine
throughout the course of these chapters. In Chapter 8, the EµFER machine will be
optimized with the use of the model derived in Chapters 4 to 7. Also in Chapter 8,
the analytical model will be generalized to other machine types and configurations.

In this chapter, the framework for deriving the analytical model is described.
The magnetic field, or more specifically, the magnetic vector potential A, forms the
heart of the analytical model. Together with the material properties, the vector po-
tential contains all the information about the magnetic fields B and H in all machine
regions. All other quantities needed for the machine’s design and analysis are de-
rived either directly from A or from B or H.

Section 4.2 starts off the chapter with motivating the choice of analytical field
calculations as the design and analysis method instead of another approach like fi-
nite elements. In Section 4.3, previous work on analytical field calculations in ma-
chines is reviewed from publications found in literature. Section 4.4 discusses the
derivation of a model for calculating the magnetic field by solving for the mag-
netic vector potential. Section 4.5 explains how this magnetic field links with the
stator winding to obtain measurable quantities, while Sections 4.6 and 4.7 derive
expressions for power and torque from the magnetic field quantities. Section 4.6 dis-
cusses how the Poynting vector can be used to calculate electromagnetic power in
the air gap, from which mechanical power (torque) and the eddy current losses in the
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shielding cylinder can be calculated. Section 4.7 examines another method whereby
electromagnetic torque can be calculated: the Lorentz force equation. This simple
method may be used to check the more complicated Poynting vector technique. The
chapter is summarized in Section 4.8.

4.2 Design methodology: Analytically solving the two-

dimensional magnetic field

4.2.1 The analytical method vs the finite element method

In this thesis, the method of analytical field calculations was chosen to design the
EµFER machine. The reasons for this choice are as follows:

• Lower computation time. The analytical method has the important drawback of a
longer initial time requirement compared to the finite element method (FEM).
In spite of this longer time initially needed to develop a design and analysis
framework for the machine, computation takes a fraction of the time required
by the finite element method once an analytical model has been developed.

• The geometry of the EµFER machine is well suited for an analytical approach. The
machine is cylindrical and it has a large air gap. These facts make it imperative
that the behavior of the magnetic field has to be considered in at least the two
most important dimensions: radially outward and tangentially. The machine
is therefore directly analyzable in cylindrical coordinates, and ideally suited
for the analytical method. The machine geometry can be analyzed well with a
two-dimensional analytical field approach.

• The analytical approach gives greater insight into the problem. In R.L. Stoll’s text-
book on eddy current analysis [Sto74], the analytical approach is advocated
exactly for this reason. Several studies are described in the book where ratios
of quantities, for example problem dimensions, are later related to important
design outputs. This provides powerful insight into the relationships between
quantities, and one can quickly see trends and in such a manner that a deeper
understanding of the problem is gained. Such insight is very difficult to obtain
with the FEM, since every geometry change demands new meshing, solving
and post-processing to take place. This method therefore requires many com-
putations before relationships between quantities and trends can be identified.

For the reasons listed above, the analytical approach was chosen in this thesis.

4.2.2 Two-dimensional field approach

Solving for three-dimensional fields is a very difficult task analytically, and there-
fore the machine is simplified to the two-dimensional cross section of Figure 3.6.
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Neglecting the magnetic field in the third dimension will introduce errors into the
analytical model. (For example, the end windings are not included in the model, and
they have an effect on the frequency behavior of the main-field inductance.) But as
will be shown later, experimental results confirm that these errors are small. This is
important to mention since the machine is quite flat with a large air gap and still a
2D-field model adequately describes its behavior.

The 2D-problem is approached with classical layer theory, where the machine
is divided into layers or regions of interest. The magnetic field is then solved for
each of these regions, from which all other important quantities are obtained. The
first step in developing an analytical model for designing a machine such as the one
shown in Figure 3.6 is therefore to define the regions of interest.

4.2.3 Definition of machine regions for an analytical approach to
its design

In the the rest of this thesis, the stator inner radius rsi is set to zero to limit the number
of regions in the machine. This is no problem as long as the stator iron does not
saturate in the physical machine, since it is assumed that the permeability of the
stator and rotor iron is infinite. (See the list of assumptions in the next section.)

Figure 4.1 shows a definition of the machine regions defined for the analytical
field calculations of this thesis. The eddy currents in the shielding cylinder are in-
cluded in the calculation, and thus the shielding cylinder is required to be a separate
region. In classical layer theory, therefore, the system has six layers as indicated. In
the next subsection, the outline of the analytical approach is further developed by
introducing the stator and rotor angular coordinate systems.
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Figure 4.1: A quarter cross section of the flywheel machine for the analytical calcula-

tion of the magnetic field, showing the six defined layers.
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4.2.4 The stator and rotor angular coordinate systems

In any PMSM, two reference systems can be identified: a stationary one fixed to
the stator, and a rotary one fixed to the rotor. The former is generally called the abc
system, and the latter the dq-system. Figure 4.2 shows the definitions of the reference
systems and angular coordinates of the stator and rotor used in the rest of this thesis.

The stator angular coordinate is introduced as ϕ, measured from the a-axis in the
abc-reference system of the stator, as shown in Figures 4.2(a) and (d). Figures 4.2(b)
and (e) show the same angle ϕ, now in the semi-four-phase αβ-system obtained by
the Clarke transformation C23.

The rotor angular coordinate φ, measured from the d-axis in the dq-system fixed
to the rotor, is shown in Figures 4.2(c) and (f). Variables in the abc-system can
be transformed into the dq-system by first doing the Clarke transformation and
then rotating the result by the rotor positional angle by means of a rotation ma-
trix −Crot(pθ). The combination of these two transformations is known as the Park
transformation C23,rot(pθ).

The rotor positional angle θ is introduced as the angle between the dq- and abc-
or αβ-systems as:

θ ≡ ϕ − φ, (4.1)

as can be seen from Figures 4.2(c) and (f). The dq-system rotates at a mechanical
angular velocity of ωm with respect to the abc- or αβ-systems, or:

θ(t) =

∫
ωm dt + θ0/k = ωmt + θ0/k, (4.2)

where θ0 is the initial rotor position.
Figure 4.2 also shows the effect of the number of pole pairs on the reference

systems and the angular coordinates. This effect can be seen by comparing the dif-
ference in Figures 4.2(a)–(c) and Figures 4.2(d)–(f). The former is drawn for a three-
phase, two-pole machine and the latter for a three-phase, four-pole machine. It can
be clearly seen that by doubling the number of poles, the angles between the axes of
all the reference systems are halved (in mechanical radians). However, considering
the angles to be measured in electrical radians, i.e. by multiplying all angular vari-
ables by the pole-pair number p, this effect disappears. Therefore, if ϕ, φ, θ and ωm

is replaced by pϕ, pφ, pθ and pωm respectively, Figures 4.2(a)–(c) stay valid for all p.
Also, equations (4.1) and (4.2) stay valid for all p. This is the convention that will be
followed in the rest of this thesis.

4.3 Literature review of 2D magnetic field calculations

Analytical field calculations are not new. In fact, the 2D-solution to Poisson’s equa-
tion has been known since early in the previous century [Hag29]. However, since
the availability of high energy product rare-earth permanent magnets like Samarium
Cobalt (SmCo) in the 1970s and Neodymium Iron Boron (NdFeB) in the 1980s, the
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Figure 4.2: The different reference systems in the machine.

analytical calculation of the magnetic field in permanent-magnet-excited machines
has received renewed interest in recent literature. Before these magnets were in use
in machines, the air gaps were small and one-dimensional field calculations were
adequate. These rare-earth permanent magnets resulted in larger useable air gaps
since their coercive force is so high. These large air gaps resulted in curvature effects
of the field and therefore one-dimensional analysis was no longer adequate.

For recent literature see, for example, [Bou84], [Wat92], [Zhu93a], [Kim98a],
[Pol98], [Mos98a], [Ras00] and [Zhi00] for a description of the analytical calcula-
tion of the 2D B-field in permanent magnet machines in cylindrical coordinates due
to radially magnetized permanent magnets, and [Mos98b] in Cartesian coordinates.
In [Bou84], [Mos98a], [Mos98b] and [Ras00], equivalent surface current densities are
used to replace the permanent magnets, while in [Wat92], [Zhu93a], [Kim98a] and
[Pol98] the magnetization is used directly.
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In [Zhu93a], the permanent magnets are considered to be surface mounted, as
in [Bou84], [Wat92], [Kim98a], [Mos98a], [Mos98b], [Ras00] and [Pol98]. [Zhu93a] is
the first part of a four-part series devoted to the analytical calculation of magnetic
fields in permanent magnet machines. As already mentioned, the first part describes
the field due to the magnets. The other three parts consider the magnetic field due
to the stator currents [Zhu93b], the effects of stator slotting on the field [Zhu93c],
and the combination of fields due to the magnets and stator currents, resulting in
the field in a loaded machine [Zhu93d]. In [Zhu94], Zhu et al. further develops
their analytical model to predict the magnetic field due to inset magnets. In [Zhu02],
several improvements on [Zhu93a] are documented: internal and external rotors are
now included in their model, as well as both radial and parallel magnetization. (The
field due to both radial and parallel magnetization has also been solved in [Bou84].)

Watterson et al. developed an analytical field calculation model specifically as
an optimization tool for a machine with a solid permanent-magnet rotor and slotless
stator [Wat92]. Kim et al. discussed the solution of the 2D-magnetic field in cylindri-
cal coordinates in a machine with rotor eccentricity in [Kim98a]. In [Kim98b], they
included the stator slotting effect on the field in the model. Zhilichev [Zhi00] com-
bines analytical field calculations with corrections from the finite element method
where necessary, resulting in a hybrid method. Both slotless and slotted stators are
included, although the emphasis is on the treatment of the slots. In this thesis, the
effect of stator slotting on the field is of no importance since the case-study machine
introduced in Chapter 3 is slotless.

In [Bou84], [Zhu93a]—[Zhu93d], [Zhu94], [Kim98b], [Zhi00] and [Zhu02], the
magnetic scalar potential is used to obtain the magnetic field of the magnets, while
in [Wat92], [Pol98], [Mos98a] and [Mos98b], the magnetic vector potential is used. In
[Ras00], a combination of both approaches is used. In this thesis, the vector potential
approach is used, and the motivation for this choice is discussed in the next section.

4.4 Derivation of a calculation model for the magnetic

field

4.4.1 Motivation for the use of the magnetic vector potential

One tool in the analysis and design of a permanent-magnet machine is to be able
to predict the magnetic flux density B and field intensity H due to the various field
sources in all the machine regions.

Vector fields, like B and H, are position dependant. With every such field a
potential may be associated, where the field relates to the potential and some combi-
nation of its positional derivatives. Depending on the nature of the vector field, this
potential can either be a scalar potential or a vector potential.

A vector field can either be solenoidal, or irrotational, or both. A vector field X
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is said to be solenoidal if:
∇ · X = 0, (4.3)

and irrotational if:
∇× X = 0. (4.4)

Solenoidal vector fields may be represented by a vector potential, and irrotational
vector fields by a scalar potential [Hau89], [Ham99].

The relationships between magnetic fields and the potentials associated with
them are listed in Table 4.1. In Table 4.1 one can see that it is straightforward to
obtain the vector field once its associated potential has been obtained.

Ampère’s Law (∇× H = J) shows that H is only irrotational in regions where
there is no current density. However, it is possible to use the magnetic scalar po-
tential in regions where a non-zero current density exists by introducing the electric
vector potential T [Ham99]. This potential is defined by rewriting Ampères Law as
follows:

∇× (H − T) = 0, (4.5)

where the electric vector potential T is defined implicitly by:

J ≡ ∇× T, (4.6)

similar to the definition of the magnetic vector potential. By introducing the electric
vector potential, the condition for obtaining the magnetic field in all regions therefore
changes from J = 0 to ∇ · J = 0, which is not a severely restricting constraint. The
magnetic flux density B is always solenoidal, for all J, due to the law of conservation
of magnetic flux (∇ · B = 0).

Choosing whether to use the magnetic scalar or vector potential to solve for the
field thus reduces to imposing a non-limiting constraint upon J or no constraint at all.
Either choice will lead to good results, as shown in literature. In this thesis, however,
the magnetic vector potential is chosen. Later in this chapter it will be shown that the
machine inductances and other parameters can be obtained from the vector potential
directly, thereby further motivating this choice. Before discussing the derivation of
the vector form of Poisson’s equation, we first list the assumptions made in the rest
of the thesis in the next subsection.

Associated Associated
scalar vectorVector field

potential potential
Relationship Condition

H Vm – H = −∇Vm if J = 0

H − T Vm – H − T = −∇Vm if ∇ · J = 0

B – A B = ∇× A none

Table 4.1: Relationship between potentials and magnetic fields.
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4.4.2 List of assumptions

In the rest of the work presented in this thesis, the following assumptions were made:

1. linearity, i.e., the vector potentials of different sources may simply be added
together algebraically: Atotal = Amagnets + Astator currents;

2. symmetry, i.e., A(r, ϕ) = −A(r, ϕ + π
p );

3. the relative permeability of the stator and rotor iron is infinite, i.e., it does not
saturate;

4. the relative permeability of all non-iron parts (the winding, shielding cylinder
and the magnets) is equal to 1;

5. the magnets do not demagnetize; and

6. all materials are isotropic.

4.4.3 Derivation of the vector form of Poisson’s equation

As shown in Section 4.4.1, since B is always solenoidal, finding B is equivalent to
finding the vector potential A. This section is therefore dedicated to the derivation
of the vector form of Poisson’s equation in order to find A.

In Appendix B, the equations of Maxwell are listed for stationary media. In
Section B.3, the field equation for the magnetoquasistatic (MQS) approximation is
listed as:

−∇× H + J = −Jext, (4.7a)

∇× E +
∂B

∂t
= 0, (4.7b)

∇ · Jext = 0, (4.7c)

and

∇ · B = 0. (4.7d)

The static part is given by (4.7a) and the dynamic part by (4.7b).
The constitutive relations for a linear isotropic medium are:

J = σE, (4.8a)

which is Ohm’s Law, and

B = µH + Brem, (4.8b)

where σ is the conductivity, µ the permeability and Brem the remanent flux density
of the material, respectively.
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By use of (4.8b), Ampère’s Law (equation (4.7a)) can be rewritten as:

∇× H = J + Jext

∇×
[

1

µ

(
B − Brem

)]
= J + Jext

∇× B = µJ + µJext + ∇× Brem.

(4.9)

Since B is solenoidal from (4.7d), it can be written in terms of the vector potential
as:

B = ∇× A. (4.10)

Substituting this into (4.9), one obtains:

∇× (∇× A) = µJ + µJext + ∇× Brem. (4.11)

The left-hand side of this equation can be rewritten from the vector identity as:

∇× (∇× A) = ∇ (∇ · A) −∇2A. (4.12)

By choosing the Gaussian gauge:

∇ · A = 0, (4.13)

and using (4.12), equation (4.11) is rewritten as:

−∇2A = µJ + µJext + ∇× Brem. (4.14)

The final step is to substitute the constitutive relation (4.8a) in conjunction with:

E = −∂A

∂t
(4.15)

into (4.14). This results in:

−∇2A + µσ
∂A

∂t
= µJs + ∇× Brem, (4.16)

where the external current density Jext has been replaced by the stator current den-
sity Js.

Equation (4.16) stands central in this thesis. This is because it relates the vector
potential (including the eddy-current effects on it) to the two main field sources in
the machine: the permanent-magnet array described by Brem, and the stator current
density described by Js.

In Chapter 5, the Poisson equation (4.16) will be used to derive A due to the
three permanent-magnet arrays: (i) the radial array; (ii) the discrete Halbach array
with two segments per pole; and (iii) the ideal Halbach array. In Chapter 5, eddy
current effects upon A are neglected, and therefore Poisson’s equation for magne-
toquasistatic fields with ∂A/∂t = 0 is used since it is assumed that the shielding
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cylinder shields the magnets and therefore no eddy currents can flow in them. The
stator current density is also set equal to zero in Chapter 5, thereby simplifying (4.16)
to:

−∇2A = ∇× Brem, (4.17)

where the right-hand side is only nonzero in the magnet regions.
Chapter 6 investigates the field due to the stator currents, including the influ-

ence of the reaction field of the eddy currents in the shielding cylinder. In this case,
equation (4.16) simplifies to:

−∇2A + µσ
∂A

∂t
= µJs, (4.18)

where Js is only nonzero in the stator current region and µσ∂A/∂t is only nonzero in
the shielding cylinder region.

In order to solve for A from equation (4.16), we set up boundary value problems
by writing boundary condition equations for the layers shown in Figure 4.1. In writ-
ing these equations, it is recognized that the only two relevant boundary conditions
are those implied by Ampère’s Law and the flux conservation law. These boundary
conditions are discussed next.

4.4.4 Boundary conditions

The boundary condition implied by Ampère’s Law (4.7a) states that the tangential
component of the magnetic field intensity on one side of the boundary is equal to
that of the other side plus a surface current density, or mathematically [Hau89]:

n̂ ×
(

H(ν) − H(ν+1)
)

= K(ν), (4.19)

where n̂ is the unit normal vector, H(ν) denotes the magnetic field intensity in region
ν and K(ν) the surface current density at the boundary interface between regions ν
and ν + 1.

The boundary condition implied by the magnetic flux conservation law (4.7d)
states that the normal component of the flux density on one side of a region bound-
ary is equal to that on the other, or mathematically:

n̂ · (B(ν) − B(ν+1)) = 0. (4.20)

4.4.5 Poisson’s equation in cylindrical coordinates for two-dimen-
sional magnetic fields

Due to the geometry of the machine, as shown in cross-sectional form in Figure 4.1,
the most appropriate coordinate system within which to solve for A is clearly the
circular cylindrical coordinate system, hereafter simply called the cylindrical coordi-
nate system. Although this coordinate system is three dimensional with coordinates
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r, φ and z, a two-dimensional simplification of the magnetic field in the machine is
used in this thesis. This two-dimensional simplification of the magnetic field implies
that:

7. the vector potential has only a z-component; and

8. it is dependent on only r and φ,

which has been added to the list of assumptions in Section 4.4.2.
From the above two assumptions, the vector potential can be written as:

A(r, φ) = Az(r, φ)îz, (4.21)

which, from (4.10), results in the following expression for the flux density:

B(r, φ) = Br(r, φ)îr + Bφ(r, φ)îφ. (4.22)

From (4.22) and (4.21), the relationship between the magnetic vector potential
and the magnetic flux density (4.10) becomes:

Br îr + Bφ îφ =
1

r

∂Az

∂φ
îr −

∂Az

∂r
îφ. (4.23)

Also from (4.22) and (4.21), the Poisson equation (4.16) is significantly simplified
to:

∂2 Az

∂r2
+

1

r2

∂2 Az

∂φ2
+

1

r

∂Az

∂r
+ µσ

∂Az

∂t
= −µJs,z −

Brem,φ

r
−

∂Brem,φ

∂r
+

1

r

∂Brem,r

∂φ
. (4.24)

In Chapters 5 and 6, this partial differential equation will be solved in the simp-
lified forms of (4.17) for Chapter 5 and (4.18) for Chapter 6.

We have now outlined a method to obtain the 2D-magnetic field in the machine
in cylindrical coordinates due to the two main field sources. In order for this mag-
netic field to do useful work, it must link with the stator winding. This flux linkage
is the next subject of attention.

4.5 From magnetic field to linked flux

4.5.1 General definition

The amount of magnetic flux linking with a coil is called the flux linkage, and defined
as:

λ ≡
∫∫

S

B · da, (4.25)

where B is the density of the magnetic flux linking with a coil formed by the surface
of integration S.
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As shown in [Hau89], [Pol97] and [Gie97], by the use of Stokes’ Integral The-
orem, one can obtain the flux linkage of a coil directly from the magnetic vector
potential. From (4.10), (4.25) and Stoke’s Integral Theorem, we may write for the
flux linkage:

λ =

∫∫

S

B · da =

∫∫

S

∇× A · da =

∮

C

A · ds, (4.26)

where C is the closed contour forming a boundary for S, i.e., the contour C follows
along the conductor making up the coil.

Figure 4.3 depicts an integration surface S and its bounding curve C to evaluate
(4.26) on the stator surface of an external rotor four-pole machine, as introduced in
Chapter 3. In Figure 4.3, the curve C is formed by a single full-pitch turn, i.e., from
ϕ = 0 to ϕ = π/2 rad, although for illustrative purposes, any angle would suffice.
The curve C is made up of four parts: Cxy1, Cz1, Cxy2 and Cz2.

Since the vector potential was assumed to have only a z-component and to be in-
dependent of z, or A = Az(r, ϕ)îz, the following two remarks regarding the contour
integral are made:

• A has no r- or ϕ-components. Therefore, the contour integrals along Cxy1 and
Cxy2 in the XY-plane are zero:

∫

Cxy1

A · ds =

∫

Cxy2

A · ds = 0; (4.27)

• A is constant in the Z-direction. Therefore, the contour integrals along Cz1 and
Cz2 are equal to the value at that particular value of r and ϕ, times ls, the stator

C

S B

z2

C
Cxy2

Cxy1

Y

X
Z

Cz1

rso
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Figure 4.3: Contour integral for calculating the flux linked with a single full-pitch turn

on the stator surface of an external rotor PMSM.
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axial length (stack length), or:
∫

Cz1

A · ds = −ls Az

(
r, ϕ + π

p

)
=

∫

Cz2

A · ds = ls Az(r, ϕ), (4.28)

where Assumption 2 (symmetry) of Section 4.4.2 has been used.
From (4.26), (4.27) and (4.28), the total flux linked by a full-pitch turn at a radius

r and angle ϕ is simply:
λt(r, ϕ) = 2ls Az(r, ϕ). (4.29)

Since the cylinder in Figure 4.3 represents the stator iron of the machine introduced
in Chapter 3, the flux linking with the contour C in the figure is λt(rs, 0).

4.5.2 Possible flux linkages

The magnetic field caused by permanent-magnet excitation in a PMSM needs to in-
teract, or link, with the stator winding if useful energy is to be transferred. Similarly,
the flux due to the currents flowing in the stator winding also links with the winding
itself. Furthermore, eddy currents are induced in the shielding cylinder due to high-
frequency magnetic fields originating from the stator currents. These currents in the
shielding cylinder also link with the stator winding, and in [Pol98] this is treated
explicitly by modelling the shielding cylinder as an infinite series of “windings”. In
this thesis, the magnetic field due to the stator currents includes the effect of the re-
action field due to the induced eddy currents in the shielding cylinder. Therefore, it
is unnecessary to model the flux linkage of the shielding cylinder explicitly. This is
also true of the flux linkage of the stator winding due to the currents in the shielding
cylinder, since it is already included in the field due to the stator currents.

In Chapter 5, the magnetic field due to the permanent magnets is discussed,
including other important quantities derived from this field. One of these is the flux
linkage of the stator winding due to the permanent magnets: from it, the no-load
voltage of the machine can be calculated.

An important quantity derived from the flux linkage of the stator winding due
to the currents in itself is the stator main-field self-inductance. The calculation of this
inductance is discussed in Chapter 6.

4.6 The Poynting vector

4.6.1 Introduction

In Appendix B, the Theorem of Poynting is given and worked out for rotating sys-
tems. This theorem may be used to relate the power density in the air gap of a
machine to various components, i.e., dissipated and mechanical components.

The Poynting vector in the frequency domain is defined as:

ˆ̄S ≡ 1
2

( ˆ̄E × ˆ̄H∗) [W/m2], (4.30)
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where the real-valued vector E may be written in terms of ˆ̄E and its complex conju-

gate ˆ̄E∗ as:

E = Re
{

ˆ̄Eejωt
}

= 1
2

(
ˆ̄Eejωt + ˆ̄E∗e−jωt

)
. (4.31)

A similar expression as (4.31) is valid for the relationship between H and ˆ̄H and other
real-valued and complex-valued vectors, including the Poynting vector of (4.30).

When the rotor rotates, the stator “observes” the fields differently than the rotor
does and vice versa. A way is thus needed to describe the electromagnetic prob-
lem in the rotor coordinate system as well as in the stator coordinate system. Such
a method may be obtained by using results from the theory of special relativity in-
troduced by Einstein. When using these results, the Theorem of Poynting may be
written in two coordinate systems [Blo75]: the so-called R-system (the rotor) and the
L-system (the stator). The R stands for “rest” and indicates that the R-system is in
rest with respect to the matter that is moving; in our case, the rotor. The L-system
stands still (i.e. the stator) and observes the matter and consequentially the R-system
as moving with respect to itself.

One requirement of the theory of special relativity is that the velocity must be
constant. In rotational systems, this is not the case since the direction changes. With
circumferential velocities small in relation to the speed of light in vacuum, however,
the approximation of constant velocity holds [Bla73], [Shi73].

4.6.2 The Theorem of Poynting

Integral form in the frequency domain: R-system

This section actually does not list the Theorem of Poynting, but the more useful con-
servation of energy relation derived from it. (See Appendix B for more information.)
Quantities in the R-system are indicated by placing primes on the symbols; for ex-

ample, ˆ̄S in the L-system becomes ˆ̄S′ in the R-system.
In the R-system, i.e., in rotor coordinates, this is in integral form in the frequency

domain:

−Re






∮

S

ˆ̄S′ · da




 − 1
2 Re






∫

V

σ ˆ̄E′ · ˆ̄E′∗ dv




 = 1
2 Re






∫

V

ˆ̄E′ · ˆ̄J
′∗
ext dv




 , (4.32)

where S is the bounding surface of V, i.e. S = ∂V, and ˆ̄J
′
ext is the external current

density. (The external current density is external to the volume V.)
In rotor coordinates, we have therefore:

〈P′
source〉 − 〈P′

diss,sc〉 = 〈P′
ext〉, (4.33)

meaning that the average air gap power minus the power dissipated in the shielding
cylinder is equal to the average power passing through the surface S.
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Integral form in the frequency domain: L-system

The conservation of energy in the frequency domain in the L-system is:

− Re






∮

S

ˆ̄S · da




 − 1
2 Re






∫

V

ˆ̄H · jωBrem dv




 − 1
2 Re






∫

V

σ ˆ̄E · ˆ̄E∗ dv






− 1
2 Re






∫

V

(σµvc × ˆ̄H) · ˆ̄E∗ dv




 = 1
2 Re






∫

V

ˆ̄E · ˆ̄J
∗
ext dv




 . (4.34)

In stator coordinates, we have therefore:

〈Psource〉 − 〈Pmech〉 − 〈Pdiss,sc〉 − 〈Pmech,sc〉 = 〈Pext〉. (4.35)

One can see from a comparison of (4.33) and (4.35) that there are more power
terms in stator coordinates. The reason why this is so is explained in Chapter 7 and
Appendix B; the former explains the existence of more power terms by investigating
the combination of space and time harmonic components and the latter by deriving
them from the field equations.

4.6.3 The placement of the integration surface S

It is obvious that the placement of the integration surface S is a very important as-
pect of the problem of calculating power balances in the machine. The integration
surface S has the form of a cylinder, very similar to the shaded area in Figure 4.3. The
difference with Figure 4.3 is that the shaded area in the case of the surface integral of
the Poynting vector spans the whole circumference: it calculates the power moving
through the entire surface.

In this thesis, the surface is located at two different places:

• Firstly, in the derivation of the power balances in Appendix B, the surface is
placed just outside the magnets. The reason for this is that if we go further out-
wards, the permeability becomes infinite per definition and the Poynting The-
orem as listed in (4.32) and (4.34) is no longer valid.1

When the surface is located just outside the magnets, the external power is zero
(in both the L- and R-systems.) For the R-system, this means that the air gap
power is equal to the dissipated power in the shielding cylinder; see (B.47).
For the L-system, apart from the dissipated power in the shielding cylinder
there is also a mechanical power component delivered to the cylinder and one
delivered to the permanent magnets; see (B.48).

• In the rest of the thesis, the integration surface S is placed in the centre of the
air gap. This makes σ = 0 inside the integration volume of equations (4.32) and

1Another term should be added in this case; see equation (B.33) in Appendix B.
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(4.34), and the remanence zero in (4.34). The power balances (4.33) and (4.35)
therefore simply become:

〈Psource〉 = 〈Pext〉. (4.36)

The above discussion leads to the following very important conclusions for the
calculation of the air gap power (the integration surface S is in the center of the air
gap).

• In rotor coordinates, the air gap power is:

〈P′
source〉 = 〈P′

diss,sc〉, (4.37)

• and in stator coordinates, the air gap power is:

〈Psource〉 = 〈Pmech〉 + 〈Pdiss,sc〉 + 〈Pmech,sc〉. (4.38)

Finding the above power components is thus equal to finding the source power
flowing from the stator to the rotor through the air gap. This is simply the real part
of the closed surface integral of the complex Poynting vector:

〈Psource〉 = −Re






∮

S

ˆ̄S · da




 . (4.39)

Obtaining 〈P′
source〉 is similar to (4.39), but with ˆ̄S replaced by ˆ̄S′. Chapter 7 will show

that 〈P′
diss,sc〉 = 〈Pdiss,sc〉.

In the thesis, therefore, the air gap power is calculated directly from the Poynt-
ing vector as in (4.39). The breakup into mechanical and loss components is found
by interpretation, not calculation. The next section discusses the calculation of (4.39).

4.6.4 Application to the two-dimensional magnetic field

It is assumed in this thesis that the magnetic field H has only r- and φ-components,
as can be seen from (4.22). Furthermore, from Faraday’s Law (4.7b) and the fact that
A has only a z-component, the induced electric field also has only a z-component.
The Poynting vector can thus be written from (4.30) as:

ˆ̄S =

∣∣∣∣∣∣

îr îφ îz

0 0 Ēz

H̄∗
r H̄∗

φ 0

∣∣∣∣∣∣
= −ĒzH̄∗

φ îr + ĒzH̄∗
r îφ (4.40)

Therefore, the Poynting vector in the machine also has only r- and φ-components.
When one wants to calculate the power that flows from the stator to the rotor (or the
other way round), only the radial component plays a role. This follows from the
choice that the integration surface S is a cylinder, similar as in Figure 4.3. From
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equation (4.39) it then follows that the surface integral is only nonzero for the radial

component of ˆ̄S.

The closed surface integral of the Poynting vector ˆ̄S in (4.39) is the average
power crossing the air gap from the stator to the rotor. It is, from (4.40):

−
∮

S

ˆ̄S · da = − 1
2

ls∫

0

2π∫

0

(−ĒzH̄∗
φ) r dφ dl = πrls ĒzH̄∗

φ, (4.41)

where r is the location of the integration surface S. The most obvious location for S is
in the centre of the mechanical air gap, or r = rag = (rw + rci)/2. In this way, one can
calculate the power crossing the air gap from the stator to the rotor.2 In Chapter 6,
the locked rotor machine impedance and the losses in the shielding cylinder will be
calculated from (4.41). The electromagnetic torque will also be calculated from (4.41)
(in Chapter 7).

4.7 Lorentz force

4.7.1 Definition

Another way3to calculate electromagnetic torque is by use of the Lorentz force, which
is directly applicable in the EµFER machine since the conductors are situated in the
air gap. The Lorentz force is the force experienced by a conductor situated in a mag-
netic field, and given by:

f = J × B, (4.42)

where f [N/m3] is the electromagnetic force density, J [A/m2] is the current density
and B [T] the magnetic flux density. The total force F [N] may be obtained from
(4.42) by calculating the integral over the volume, and the electromagnetic torque
[Nm] may be obtained from F by:

T = r × F, (4.43)

where r is the radial position vector.
The reason for using both the Poynting vector and Lorentz force method is that

the latter provides some verification of the former. It was felt that verification is
necessary since the use of the Poynting vector, as in this thesis, is not widely found
in literature.

2Equation (4.41) was written in stator coordinates. In rotor coordinates, it has the same form, but all
quantities are primed, as shown in the previous section.

3There is, of course, other methods to calculate forces and torques; for example, by using the Maxwell
stresses. However, this method is more complex than the Lorentz force method, and it leads to the same
result: the electromagnetic force, which can then be translated into the torque. Similarly to the Lorentz
force method, the Maxwell stress method does not provide any information on dissipated power. There-
fore, by using the Poynting vector and the Lorentz force methods, all power components are calculated,
and there is no need for another (more complicated) method.
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4.7.2 Application to the two-dimensional magnetic field

For the machine under discussion in this thesis, the only component of the stator
current density Js is the axial or z-component Js,z îz. Furthermore, the only two com-
ponents of the magnetic field due to the permanent magnets are the radial and tan-
gential components Br îr and Bφ îφ, respectively. From (4.42) this means that the elec-
tromagnetic force density f also has radial and tangential components:

f = fr îr + fφ îφ = −Js,zBφ îr + Js,zBr îφ. (4.44)

The only component of f that contributes to useful torque is obviously fφ îφ.
Therefore, the electromagnetic torque of the machine can be written as:

Te = ls

rw∫

rso

2π∫

0

r2Br(r, φ)Js,z(r, ϕ) dr dϕ. (4.45)

It should be noted that the magnetic flux density in (4.45) is written in the rotor
coordinate system because its source is the permanent magnets, while the current
density is written in the stator angular coordinate system. Transforming either one
to the other will lead to the same result since the electromagnetic torque on the stator
is equal to that on the rotor (see equation (4.1)).

Equation (4.45) will be used in Chapter 7 to obtain the electromagnetic torque
of the machine.

4.8 Summary

This chapter outlined the analytical approach to the design and analysis of a slotless
PMSM.

The choice of the analytical design methodology was motivated in Section 4.2,
while Section 4.3 discussed literature on 2D-field calculations. Section 4.4 showed
how to obtain an analytical model for calculating of the magnetic field in the ma-
chine, while Section 4.5 explained how this field links with the stator winding

Sections 4.6 and 4.7 discussed two powerful techniques to calculate electromag-
netic power in the air gap (the Poynting vector) and electromagnetic torque (the
Lorentz force).

The techniques outlined here will be used in detail in Chapters 5, 6 and 7 to ob-
tain the fields and derived quantities of the EµFER machine introduced in Chapter 3.

The assumptions regarding the vector potential and material properties made
in this chapter are valid for the remainder of the thesis. They are summarized as:

1. linearity, i.e., the vector potentials of different sources may simply be added
together algebraically: Atotal = Amagnets + Astator currents;

2. symmetry, i.e., A(r, ϕ) = −A(r, ϕ + π
p );
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3. the relative permeability of the stator and rotor iron is infinite, i.e., it does not
saturate;

4. the relative permeability of all non-iron parts (the winding, shielding cylinder
and the magnets) is equal to 1;

5. the magnets do not demagnetize;

6. all materials are isotropic.

7. the vector potential has only a z-component; and

8. the vector potential only depends on r and φ.
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CHAPTER 5

The field due to the permanent magnets and derived

quantities

5.1 Introduction

In Chapter 3, the EµFER case study machine was introduced. Particularly, in Sec-
tion 3.7.6, different possible permanent-magnet arrays for the excitation field of the
machine were mentioned. There it was said that here, three permanent-magnet ar-
rays will be discussed in detail: the radial array, the discrete Halbach array with two
segments per pole and the ideal Halbach array.

The analytical method to solve for the magnetic field was motivated in Chap-
ter 4, and in particular, the layer theory approach to solving for the field was men-
tioned. The six layers identified for this were shown in Figure 4.1, including the eddy
current reaction field in the shielding cylinder. For the field due to the magnets, the
reaction field is not important since there is no relative movement between the mag-
nets and the shielding cylinder. All space-harmonic field components penetrate the
cylinder into the air gap. For this reason, the six layers can be reduced to four, as
shown in Figure 5.1. In this chapter, the magnetic field will be calculated for these
four regions, and useful quantities derived from this field.

The method for calculating the magnetic field was outlined in Chapter 4, i.e.
solving for the magnetic vector potential by means of the vector form of Poisson’s
equation (4.16). The method to calculate the magnetic field due to the magnets is
further refined in Section 5.2, which also describes the form of the solution and a
general procedure to solve for any array. In Sections 5.3, 5.4 and 5.5, this general
solution is applied and worked out for the three arrays mentioned above. These
three sections are preceded by a discussion on changing the value of the remanent
flux density of the permanent magnets in the analytical model to conform better to
reality (Section 5.2.4). Section 5.6 compares the analytically calculated magnetic field

77
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Figure 5.1: A quarter cross section of the flywheel machine for the analytical calcula-

tion of the magnetic field due to the permanent magnets, showing the four

layers of interest for this case.

of the radial array with a finite element method calculation.
Concerning the derived quantities, Section 5.7 discusses the no-load voltage of

the machine from the flux linkage of the stator winding due to the permanent mag-
nets. This is verified experimentally in Section 5.8. Section 5.9 summarizes and con-
cludes the chapter.

5.2 Solution of the magnetic field

5.2.1 Introduction

Chapter 4 showed that the magnetic field can be obtained by solving Poisson’s equa-
tion (4.16) for the magnetic vector potential A. It was also shown that equation (4.16)
can be simplified to (4.17) when solving for the field due to the magnets.

By applying the 2D-simplifications listed in Chapter 4 to (4.16), equation (4.24)

is obtained. Now by setting to zero the terms µσ ∂Az
∂t and µJs,z in (4.24), one obtains:

∂2 Az

∂r2
+

1

r2

∂2 Az

∂φ2
+

1

r

∂Az

∂r
= −Brem,φ

r
− ∂Brem,φ

∂r
+

1

r

∂Brem,r

∂φ
. (5.1)

This chapter discusses the solution of equation (5.1) for the three permanent-
magnet arrays mentioned in the introduction.

Table 5.1 lists the four machine regions, also shown in Figure 5.1, within which
is solved for A. The regions are denoted by ν and counted from the inside out. The
governing equation in each region is also written in its general form in Table 5.1 since
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ν Description Range for r µ
(ν)
r Governing equation

1 Stator iron rsi ≤ r < rso µ
(1)
r = ∞ −∇2A = 0

Winding region &
2 mechanical air gap rso ≤ r < rmi µ

(2)
r = 1 −∇2A = 0

3 Permanent magnet region rmi ≤ r < rmo µ
(3)
r = 1 −∇2A = ∇× Brem

4 Rotor iron rmo ≤ r ≤ rro µ
(4)
r = ∞ −∇2A = 0

Table 5.1: Machine regions defined for calculating the vector potential from equation

(5.1).

it is shorter. The only region where there is a magnetic field source is the permanent-
magnet region (ν = 3). In the other three regions, the Poisson equation (5.1) simpli-
fies to the corresponding Laplace equation:

∂2 Az

∂r2
+

1

r2

∂2 Az

∂φ2
+

1

r

∂Az

∂r
= 0. (5.2)

In solving for Az from (5.1) and (5.2), the four regions listed in Table 5.1 are
used to set up boundary conditions from (4.19) and (4.20). These can be written by
applying the 2D-simplifications of Chapter 4 to (4.19) and (4.20) to obtain:

H
(ν)
φ (rν, φ) − H

(ν+1)
φ (rν, φ) = −K

(ν)
z (rν, φ), (5.3)

for Ampère’s Law, and:

B
(ν)
r (rν, φ) − B

(ν+1)
r (rν, φ) = 0, (5.4)

for the flux conservation law.

5.2.2 Form of the solution

Poisson’s equation is solved by solving the associated Laplace equation first. The
Laplace equation is solved by the method of separation of variables, as documented
in many textbooks on differential equations. See, for example, [Jef90]. The solution
is a product of rk and r−k terms for the r-part and sin(kφ) and cos(kφ) terms for the
φ-part of the solution, where k is an arbitrary constant, or:

(d1rk + d2r−k)(c3 cos(kφ) + c4 sin(kφ)). (5.5)

The following steps are made to construct a solution to Laplace’s equation from
(5.5):

• The magnetization vector’s direction is chosen as in the d-axis: the cos(kφ)-
term may then be eliminated from the solution.
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• The regions wherein the equations are to be solved were already denoted by ν.

This notation is used as a superscript (ν) in the solution of Az: i.e., A
(ν)
z .

• The solution is formed by taking a sum of solutions over an infinite number of

boundary condition constants C
(ν)
k and D

(ν)
k , where k is odd.

• The radius r is normalized with respect to rν, the radius at the interface be-
tween regions ν and ν + 1.

• Use is made of the periodicity of Az with the poles of the machine: φ is then
replaced by pφ.

Therefore, the solution to Laplace’s equation (5.2) in a region ν can now be writ-
ten as:

A
(ν)
z (r, φ) =

∞

∑
k=1,3,5,···

Â
(ν)
z,k (r) sin(kpφ) (5.6a)

where:

Â
(ν)
z,k (r) = C

(ν)
k

(
r

rν

)−kp

+ D
(ν)
k

(
r

rν

)kp

, (5.6b)

and C
(ν)
k and D

(ν)
k are the boundary condition constants.

In the solution to Poisson’s equation (5.1), equation (5.6) forms a homogeneous
part of the solution. The particular solution still has to be obtained. It is assumed
that the particular solution for the ν-th region has the same Fourier-series form as
(5.6a):

A
(ν)
part,z(r, φ) =

∞

∑
k=1,3,5,···

Â
(ν)
part,z,k(r) sin(kpφ). (5.7)

Therefore, the solution to Poisson’s equation (5.1) can be written as:

A
(ν)
z (r, φ) =

∞

∑
k=1,3,5,···

Â
(ν)
z,k (r) sin(kpφ) (5.8a)

where:

Â
(ν)
z,k (r) = C

(ν)
k

(
r

rν

)−kp

+ D
(ν)
k

(
r

rν

)kp

+ Â
(ν)
part,z,k(r). (5.8b)

5.2.3 Solution procedure

The solution procedure for different machine regions may be obtained for any per-

manent-magnet array by finding expressions for H
(ν)
φ (rν, φ), H

(ν+1)
φ (rν, φ), B

(ν)
r (rν, φ)

and B
(ν+1)
r (rν, φ) from the solution of the vector potential, equations (5.6) and (5.8),

and substituting them back into the boundary condition equations (5.3) and (5.4).

The magnetic field intensity in a region ν (H
(ν)
φ ) is related to the flux density in

that region (B
(ν)
φ ) by equation (4.8b), which is valid for all material types. A relative
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permeability is defined for each region under consideration (µ
(ν)
r ), and assumptions

3 and 4 made in Chapter 4 are used to simplify µ
(ν)
r in all four regions to either 1 or

∞, as listed in Table 5.1.

5.2.4 The value of the remanent flux density

(B̂rem) setting 1

The assumption in the previous section that the relative permeability of the perma-
nent magnets is equal to one was made to simplify the analytical field calculations.
The resulting air gap flux density can be partly adjusted for a realistic relative per-
meability of larger than 1 (typically µr = 1.05 for NdFeB) by using a lower remanent
flux density in the calculation. The flux density that is obtained when the line drawn
from the point (Hc, 0) with a slope of µ0 intersects the B-axis results in a realistic
value; see Figure 5.2(a).

(B̂rem) setting 2

To simplify the analytical field calculations even further, another assumption is made:
Brem is assumed to be proportional to 1/r. This is a reasonable assumption since the
magnets are relatively thin. If the physical case of a constant remanent flux density
were to be used in the analytical calculations, the particular solution would be pro-
portional to r and contain a term 1/((kp)2 − 1) for kp 6= 1. (In [Zhu93a], this solution
was used.) When Brem ∝ (1/r) is assumed, the particular solution is independent of
r and valid for all kp. The latter option is simpler and thus chosen in the solution
presented here. To remedy the effect of this assumption on the resulting air gap flux
density, B̂rem is chosen to be the data sheet value in the centre of the magnets, as
shown in Figure 5.2(b).

H [A/m]

(data sheet value)

B [T]

Hc

m0Slope =

m0Slope =

Value used in the
analytical model

mrm

Brem

(     )

(data sheet value)

rmc
rmi(     )

B     = Brem rem

B     = Brem rem

rmc
rmo

B     = Brem rem

(a) (b)

Figure 5.2: Setting of the value of the remanent flux density: (a) (B̂rem) setting 1: due

to the difference in µr of the magnets in reality and in the analytical model;

(b) (B̂rem) setting 2: due to the assumption that Brem ∝ (1/r).
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5.3 Radial array

5.3.1 Magnetization

Figure 5.3 shows a schematic cross-sectional view of a four-pole version of this array.
The remanent flux density of the radial array is in the radial direction only: the φ-
component is zero everywhere. There is also only one segment per pole in this array,
with the inter-segment space filled with air.

The remanent flux density of the magnets in the array shown in Figure 5.3 can
be described by the vector:

Brem = Brem,r îr, (5.9)

with:

Brem,r(r, φ) =






B̂rem

( rmc
r

)
if −φm ≤ φ ≤ φm

−B̂rem

( rmc
r

)
if π

2 − φm ≤ φ ≤ π
2 + φm

B̂rem

( rmc
r

)
if π − φm ≤ φ ≤ π + φm

−B̂rem

( rmc
r

)
if 3π

2 − φm ≤ φ ≤ 3π
2 + φm

0 otherwise

(5.10)
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Figure 5.3: A cross section of the flywheel machine with radial magnetization showing

regions for the calculation of the field due to the permanent magnets.
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In (5.10), the centre radius of the magnets is given by:

rmc ≡
rmi + rmo

2
, (5.11)

as can also be seen from Figure 5.2(b).
It is more convenient to rewrite the remanence by approximation by the use of

a Fourier series representation of (5.10) as:

Brem,r(r, φ) =
∞

∑
k=1,3,5,···

B̂rem,r,k(r) cos(kpφ); (5.12a)

B̂rem,r,k(r) =
4rmcB̂rem

πrk
sin(kpφm), (5.12b)

which is valid for all kp, as opposed to (5.10), which is only valid for a four-pole
machine like the EµFER.

5.3.2 Solution

For a remanence as given by (5.12), the particular solution of Poisson’s equation (5.1)
in the magnet region (ν = 3) is given by:

A
(3)
part,z(r, φ) =

∞

∑
k=1,3,5,···

Â
(3)
part,z,k(r) sin(kpφ); (5.13a)

Â
(3)
part,z,k(r) =

4rmcB̂rem

πpk2
sin(kpφm). (5.13b)

Equation (5.13b) is a constant, i.e., independent of r. This is a direct consequence of
(5.10).

Here we give only the solutions of the vector potential in the most interesting
regions in the machine, i.e., the winding, mechanical air gap and the permanent
magnet regions. The solutions in the stator and rotor iron regions are similar. In the
equations listed below, Krad is a constant, defined as equal to the peak value of the
particular solution (5.13b):

Krad =
4rmcB̂rem

πpk2
sin(kpφm). (5.14)

The vector potential is now listed as follows:

Winding & mechanical air gap (ν = 2):

A
(2)
z (r, φ) =

∞

∑
k=1,3,5,···

Â
(2)
z,k (r) sin(kpφ); (5.15a)
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Â
(2)
z,k (r) =

Krad

2

[(
rso
rmo

)2kp
− 1

]
{[(

rso

rmo

)2kp

−
(

rso

rmi

)2kp
] (

r

rmi

)−kp

+

[(
rmi

rmo

)2kp

− 1

] (
r

rmi

)kp
}

. (5.15b)

Permanent-magnet region (ν = 3):

A
(3)
z (r, φ) =

∞

∑
k=1,3,5,···

Â
(3)
z,k (r) sin(kpφ); (5.16a)

Â
(3)
z,k (r) =

Krad

2




1 −

(
rso
rmi

)2kp

(
rso
rmo

)2kp
− 1




(

rmi

rmo

)kp
[(

r

rmo

)−kp

+

(
r

rmo

)kp
]

+ Krad. (5.16b)

5.3.3 Results of the magnetic field solution

In the radial array, the results of the magnetic field solution were calculated for a
polar magnet span that fills 80% of the circumference, i.e. 2φm = 0.8π/p.

Figures 5.4 and 5.5 show the results of the calculations of this section. The mag-
netic field lines are shown in Figure 5.4 and the radial and tangential components

Figure 5.4: Magnetic field lines due to radial array excitation.
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of the flux density in Figure 5.5. From Figure 5.5 it can be seen that the flux density
decreases with increasing radius. This is because the area through which the flux
passes, increases with increasing radius.
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Figure 5.5: (a) Radial and (b) tangential components of the flux density at several dif-

ferent radii due to radial array excitation.

5.4 Discrete Halbach array with two segments per pole

5.4.1 Introduction

As discussed in Chapter 3, many other permanent-magnet arrays than the radially
magnetized array can be used in PMSMs. It was mentioned that the use of discrete
and ideal Halbach arrays as the machine excitation was considered by several re-
searchers, both theoretically and experimentally. In this section, one of these arrays
will be investigated analytically with respect to the magnetic field produced by it:
the discrete Halbach array with two segments per pole.

See [Mar92], [Ata97] and [Ofo95] for treatments of analytical field calculations
of permanent-magnet arrays other than the radial array. Rasmussen et al. [Ras00]
replaced the permanent magnets with equivalent current densities in the bulk of the
magnets and surface current densities on the surfaces. In this way, magnetization
dependencies upon position may be modelled as well as both radial and tangential
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components of the magnetization vector. By use of the method of Rasmussen et al.,
one may solve for the field of several permanent-magnet arrays. Since the solution
due to J is already obtained in [Ras00], this same solution can also be used to solve for
the field due to the stator current distribution. Although their method is powerful, it
is more physical to use the magnetization or remanence directly to model permanent
magnets. This latter approach has been chosen in this thesis, and was already used
in the previous section for calculating the field due to the radial array. This section
continues with this approach.

5.4.2 Magnetization

The magnetization of the discrete Halbach array differs from that of the radial array
of Figure 5.3 in that properly oriented tangentially magnetized magnets are inserted
in the air spaces between the radial magnets of Figure 5.3. These magnets can be seen
in Figure 5.6, which shows a schematic cross-sectional view of a four-pole version of
this array.

The remanence of the magnets in the array shown in Figure 5.6 can again be de-
scribed by the remanence vector of (5.9), but now also with a tangential component:

Brem = Brem,r îr + Brem,φ îφ, (5.17)

r

r

r

rro

r

so

mi

mo

si

r

fm2
f1234

Figure 5.6: A cross section of the flywheel machine with a discrete Halbach array with

two segments per pole showing regions for the calculation of the field due

to the permanent magnets.
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The radial component of the remanence vector of the discrete Halbach array with
two segments per pole is the same as that of the radial array, equation (5.12), which
is repeated here:

Brem,r(r, φ) =
∞

∑
k=1,3,5,···

B̂rem,r,k(r) cos(kpφ); (5.18a)

B̂rem,r,k(r) =
4rmcB̂rem

πrk
sin(kpφm). (5.18b)

The tangential component is given by:

Brem,φ(r, φ) =
∞

∑
k=1,3,5,···

B̂rem,φ,k(r) sin(kpφ); (5.19a)

B̂rem,φ,k(r) =
4rmcB̂rem

πrk
cos(kpφm). (5.19b)

5.4.3 Solution

The solution of the vector potential for the discrete Halbach array with two segments
per pole can be constructed by summing two solutions:

A
(ν)
z (r, φ) = A

(ν)
z,rad(r, φ) + A

(ν)
z,tang(r, φ), (5.20)

where A
(ν)
z,rad(r, φ) is the vector potential due to the radially magnetized magnets and

A
(ν)
z,tang(r, φ), the vector potential due to the tangentially magnetized magnets.

It follows from (5.20) that the particular solution for this array is also the sum of
two particular solutions:

A
(3)
part,z(r, φ) = A

(3)
part,z,rad(r, φ) + A

(3)
part,z,tang(r, φ), (5.21)

where A
(3)
part,z,rad(r, φ) is the particular solution of the vector potential due to the ra-

dially magnetized magnets and A
(3)
part,z,tang(r, φ) the particular solution of the vector

potential due to the tangentially magnetized magnets. The particular solution of the
vector potential due to the tangentially magnetized magnets is zero, however. From
(5.21) this means that the particular solution of the vector potential due to the whole
array is equal to that of the radial array, equation (5.13).

In the equations for the vector potential listed below, Ktang is a constant, defined
by:

Ktang =
4rmcB̂rem

πpk2
cos(kpφm), (5.22)

similar to Krad defined in (5.14) for the radially magnetized magnets.
The vector potential in the winding, the mechanical air gap and the permanent-

magnet regions due to the tangential magnets is now listed as follows:
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Winding & mechanical air gap (ν = 2):

A
(2)
z,tang(r, φ) =

∞

∑
k=1,3,5,···

Â
(2)
z,k,tang(r) sin(kpφ); (5.23a)

Â
(2)
z,k,tang(r) =

Ktang

2





(
rmi
rmo

)−kp
+

(
rmi
rmo

)kp
− 2

(
rso
rmo

)−kp
−

(
rso
rmo

)kp





[(
r

rso

)−kp

+

(
r

rso

)kp
]

. (5.23b)

Permanent-magnet region (ν = 3):

A
(3)
z,tang(r, φ) =

∞

∑
k=1,3,5,···

Â
(3)
z,k,tang(r) sin(kpφ); (5.24a)

Â
(3)
z,k,tang(r) =

Ktang

2




2

(
rso
rmo

)kp
−

(
rso
rmi

)kp
−

(
rso
rmi

)−kp

−
(

rso
rmo

)−kp
+

(
rso
rmo

)kp




(

r

rmo

)−kp

+
Ktang

2




2

(
rso
rmo

)−kp
−

(
rso
rmi

)kp
−

(
rso
rmi

)−kp

−
(

rso
rmo

)−kp
+

(
rso
rmo

)kp




(

r

rmo

)kp

. (5.24b)

From (5.20), the total solution for the field due to this array is obtained by sum-
ming the result due to the tangential magnets ((5.23) and (5.24) above), to the result
due to the radial magnets ((5.15) and (5.16)).

5.4.4 Results of the magnetic field solution

Similar as for the radial array, the results for the discrete Halbach array with two
segments per pole were calculated for a polar magnet span that fills 80% of the cir-
cumference, i.e. 2φm = 0.8π/p. This means that the polar span of the tangential
magnets was 0.2π/p in the results presented here.

Figures 5.7 and 5.8 show the results of the calculations of this section. The mag-
netic field lines are shown in Figure 5.7 and the radial and tangential components of
the flux density in Figure 5.8. The field lines in Figure 5.7 clearly show that the flux
density in the rotor back iron is reduced due to the tangentially magnetized magnets.
The peaks of the radial component of the flux density at the sides of the radially mag-
netized magnets are also reduced by the tangentially magnetized magnets, as can be
seen in Figure 5.8.
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Figure 5.7: Magnetic field lines due to the excitation of the discrete Halbach array with

two segments per pole.

−0.5 0 0.5 1 1.5 2

−0.5

0

0.5

−π/4 ≤ φ ≤ 3π/4

 B
r(r

,φ
) 

[T
]  r

(a)

stator surface
centre of the winding
outer radius of the winding
centre radius of the magnets

−0.5 0 0.5 1 1.5 2
−1

−0.5

0

0.5

1

−π/4 ≤ φ ≤ 3π/4

 B
φ(r

,φ
) 

[T
]

(b)

stator surface
centre of the winding
outer radius of the winding
centre radius of the magnets

Figure 5.8: (a) Radial and (b) tangential components of the flux density at several dif-

ferent radii due to discrete Halbach array excitation.
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5.5 Ideal Halbach array

5.5.1 Magnetization

Figure 5.9 shows a schematic cross-sectional view of a four-pole version of this ar-
ray, where it can be seen that the magnetization of the ideal Halbach array varies
sinusoidally with φ, and not discretely as in the arrays of Figures 5.3 and 5.6.

The remanence of the magnets in the array shown in Figure 5.9 can again be
described by the remanence vector of (5.9), with the components [Ata97]:

Brem,r(r, φ) = B̂rem cos(pφ), (5.25a)

and

Brem,φ(r, φ) = B̂rem sin(pφ), (5.25b)

respectively.

5.5.2 Solution

For a remanence as given by (5.25), the particular solution of Poisson’s equation (5.1)
in the magnet region (ν = 3) is given by [Ata97]:

A3
part,z(r, φ) = Â 3

part,z(r) sin(pφ); (5.26a)

Â 3
part,z(r) =






rB̂rem
p−1 if p 6= 1

−r ln
(

r
ra

)
B̂rem if p = 1,

(5.26b)

where ra is an arbitrary constant.
The vector potential in the winding, the mechanical air gap and the permanent-

magnet regions in the machine is now listed as follows:

Winding & mechanical air gap (ν = 2):

A
(2)
z (r, φ) = Â

(2)
z (r) sin(pφ); (5.27a)

Â
(2)
z (r) =






B̂rem
p−1

[
rmo( rso

rmo )
2p−rmi

(
rmi
rmo

)p(
rso
rmi

)2p
]

[
( rso

rmo )
2p−1

](
rmi
rmo

)p

[(
r

rmi

)−p
+

(
rso
rmi

)−2p (
r

rmi

)p
]

if p 6= 1

B̂remr2
mo

r2
so−r2

mo
ln

(
rmi
rmo

) [
r2

so
r + r

]
if p = 1

(5.27b)
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Figure 5.9: A cross section of the flywheel machine with an ideal Halbach array show-

ing regions for the calculation of the field due to the permanent magnets.

Permanent-magnet region (ν = 3):

A
(3)
z (r, φ) = Â

(3)
z (r) sin(pφ); (5.28a)

Â
(3)
z (r) =





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−rmi B̂rem
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(
rmi
rmo

)p(
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rmi

)2p[
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rmo )
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( rso
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]
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rmo B̂rem
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rmo )
2p

( r
rmo )

−p
+( r

rmo )
p
]

[
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rmo )
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] + rB̂rem
p−1 if p 6= 1

B̂remr
r2

so−r2
mo

[
r2

so ln
( rmi

r

)
+ r2

mo ln
(

r
rmo

)
+ r2

sor2
mor−2 ln

(
rmi
rmo

)]
if p = 1

(5.28b)

5.5.3 Results of the magnetic field solution

Figures 5.10 and 5.11 show the results of the calculations of this section. The mag-
netic field lines are shown in Figure 5.10 and the radial and tangential components of
the flux density in Figure 5.11. As can be expected, only the fundamental harmonic
of the field is present in both the radial and tangential components.
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Figure 5.10: Magnetic field lines due to the excitation of the ideal Halbach array.

5.6 Magnetic field verification with the FEM

Figure 5.12 shows a comparison between a calculation done with the analytical method
derived in this chapter and one with the finite element method (FEM). It shows a plot
of the radial component of the flux density due to the permanent magnets for a pole
pitch in the centre of the air gap for a sample geometry. The FEM-calculation was
done with the FLUX2D R© package of CEDRAT S.A. (France). Figure 5.12(a) shows
Br(r, φ) for the radial array and Figure 5.12(b) for the discrete Halbach array with
two segments per pole.

The calculations in FLUX2D R© were done with realistic values of the relative
permeabilities of iron and of the permanent magnets of µr,Fe = 2500 and µr,magnets =

1.04, respectively. The data of magnet type 677 AP (axial pressed) was used for
the calculations of Figure 5.12. This magnet is made by Vacuumschmelze GmbH,
Germany, and the remanent flux density given in the data sheet is 1.13 T at 20◦C.
The coercivity HcB for the 677 AP magnet type is −860 kA/m at 20◦C from the data
sheet.

In the analytical method, the remanent flux density has to be changed, as ex-
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Figure 5.11: (a) Radial and (b) tangential components of the flux density at several

different radii due to ideal Halbach array excitation.

plained in Section 5.2.4, to account for the relative permeability of the magnets,
which is higher than one. This is B̂rem setting 1, resulting in B̂rem = −µ0(−860 ×
103) = 1.08 T. The other change in the remanence, B̂rem setting 2 of Section 5.2.4 (to
account for the 1/r-dependency of B̂rem), is already incorporated into (5.12).

For the radial array, the peak value of the flux density calculated with FLUX2D is
0.15% higher than that calculated by the analytical method. For the discrete Halbach
array, FLUX2D gives a 1.16% higher peak value. The shape of the flux density curve
is slightly different with the two methods, with the largest difference for the discrete
Halbach array. In spite of these minor differences, the result of the analytical method
compares well with that of the finite element method.

5.7 The flux linkage of the stator winding due to the

permanent magnets: No-load voltage

5.7.1 Introduction

In this chapter, the previous sections have discussed the magnetic fields for the three
permanent-magnet arrays. In this section, a practically useful quantity will be de-
rived from these fields due to the permanent-magnet arrays: the no-load voltage of
the machine.
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Figure 5.12: Comparison of the radial component of the flux density calculated with

the analytical method and the FEM: (a) radial array; (b) discrete Halbach

array with two segments per pole.

5.7.2 Notation and machine regions

Since the flux linkages of the different permanent-magnet arrays are used together
in this section, a notational system for differentiating between them is needed first.
Table 5.2 lists this notational system, where the subscripts rad, dh2 and ih are added

to the vector potential A
(ν)
z to denote the different field sources: the radial array, the

discrete Halbach array with two segments per pole and the ideal Halbach array.
It should also be recalled from (4.1) that the stator and rotor angular coordi-

nates are related to one another by the rotor angular position θ by: ϕ = φ + θ. Since
the permanent-magnet arrays are on the rotor, their fields are described in the rotor
angular coordinate system (r, φ, z), which rotates at synchronous speed around the
stator angular coordinate system (r, ϕ, z). To obtain the flux linkage of the wind-
ing due to the permanent magnets, the transformation (4.1) is therefore applied to
transform the rotor field to the stator.
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Permanent magnet array Notation

permanent magnets: radial array A
(ν)
z,rad(r, φ)

perm. magnets: discrete Halbach array with 2 segments per pole A
(ν)
z,dh2(r, φ)

permanent magnets: ideal Halbach array A
(ν)
z,ih(r, φ)

Table 5.2: The notation for the vector potential due to the three different permanent-

magnet arrays.

5.7.3 The stator voltage equation

The voltage equation of the stator winding can be written as:1

~us(t) = Rs~is(t) +
d~λs(t)

dt
, (5.29)

where Rs is the stator resistance and

~us(t) =




usa(t)
usb(t)
usc(t)



 , ~is(t) =




isa(t)
isb(t)
isc(t)



 , and ~λs(t) =




λsa(t)
λsb(t)
λsc(t)



 (5.30)

are the stator voltages, currents and flux linkages, respectively. The flux linking with
the stator winding can be broken down into three distinct parts, as mentioned in
Chapter 4. Two of these flux linkages arise from the two different sources of magnetic
flux, i.e., the permanent magnets (~λsm) and the stator currents (~λss). The third part
of the flux linkage of the stator is due to the leakage flux of the end windings (~λsσ).
The leakage flux in the air gap and the “slots” is included in the main air gap flux,
since the EµFER machine has an air gap winding.

Writing the total flux linkage of the stator winding explicitly as the sum of these
different parts, one obtains the stator voltage equation:

~us(t) = Rs~is(t) +
d~λsm(t)

dt
+

d~λss(t)

dt
+

d~λsσ(t)

dt
. (5.31)

5.7.4 The flux linkage of an arbitrary winding distribution

In Section 4.5, the flux linking with a full-pitch turn at radius r and angular coordi-
nate ϕ was shown to be given simply by (4.29): λt(r, ϕ) = 2ls Az(r, ϕ). Generally,
single full-pitch turns are not used in practical machines, and therefore the flux link-
ing with a physical winding has to be developed from λt(r, ϕ). This can be done by

1In this chapter, the notation ~us is introduced for vectors without directional meaning. For example,
the stator voltage vector ~us comprises the three components of the three phases a, b and c, but it is not
oriented in some direction in space. This is in contrast with vectors with a directional meaning, like the
magnetic flux density B. For these, the boldface notation is retained.
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integrating the product of λt(r, ϕ) and the winding distribution described in Chap-
ter 3. Therefore, the flux linked with phase a of an air gap winding with arbitrary
distribution nsa(ϕ) at any radius r is from (3.10) and (4.29):

λsa(r) = p

π/p∫

0

nsa(ϕ)λt(r, ϕ)dϕ = 2pls

π/p∫

0

nsa(ϕ)Az(r, ϕ)dϕ. (5.32)

The flux linked with phases b and c of the air gap winding is similar to (5.32), with
nsa(ϕ) replaced by nsb(ϕ) and nsc(ϕ), respectively.

The fields due to the three permanent-magnet arrays obtained earlier in the

chapter are linked with the stator winding. Thus, A
(2)
z,rad(r, φ), A

(2)
z,dh2(r, φ) and

A
(2)
z,ih(r, φ) are substituted into (5.32).

5.7.5 Radial array

For the radial array, equation (5.32) is rewritten as:

λsma,rad(r) = 2pls

π/p∫

0

nsa(ϕ)A
(2)
z,rad(r, φ)dϕ. (5.33)

Since the field due to the permanent magnets also contains triplen space har-
monics, as is evident from (5.15a), both the double-sided and single-sided Fourier
series of (3.16a) must be used for the winding distribution nsa(ϕ) in (5.33). Further-
more, the expression for the vector potential in the winding region due to the radial
array, equation (5.15a), must be rewritten in terms of k̈ ∈ Z and k̇ ∈ Z

+ to comply
with (3.16a).

However, it should be recalled that (3.16a) is just a way to rewrite (3.10) so that
the triplen and non-triplen harmonics can easily be separated. When considering
three-phase currents that can either be balanced or not, this approach makes sense.
When considering the field due to the permanent magnets, however, there is no need
to distinguish between the triplen and non-triplen harmonics. Therefore, the simpler
notation of (3.10) is chosen to work out the flux linkage of the stator winding due to
the permanent magnets.

Thus, from (3.10) and (5.15a), equation (5.33) may be written as:

λsma,rad(r) =
∞

∑
k=1,3,5,···

∞

∑
l=1,3,5,···

2plsn̂s,k Â
(2)
z,rad,l(r)

π/p∫

0

cos(kpϕ) sin(lpφ) dϕ. (5.34)

In (5.34), the rotor angular coordinate φ needs to be substituted with the stator angu-
lar coordinate ϕ by means of (4.1). The resulting integral is always zero except when
k = l. Therefore, the flux linked with phase a of an air gap winding with distribution



The field due to the permanent magnets and derived quantities 97

nsa(ϕ) at radius r is:

λsma,rad(r, θ) =
∞

∑
k=1,3,5,···

2plsn̂s,k Â
(2)
z,rad,k(r)

π/p∫

0

cos(kpϕ) sin [kp(ϕ − θ)] dϕ, (5.35)

now an explicit function of the rotor angular position θ. When integrated, equation
(5.35) is simply:

λsma,rad(r, θ) = −π ls
∞

∑
k=1,3,5,···

n̂s,k Â
(2)
z,rad,k(r) sin(kpθ), (5.36)

where the peak value of the vector potential Â
(2)
z,rad,k(r) is obtained from (5.15b).

For phases b and c, the flux linkage is similar to that of phase a, but displaced
at angles of 2π/3p and 4π/3p, respectively. Therefore, the flux linkage of the stator
winding due to the radial permanent-magnet array is:

~λsm,rad(r, θ) = −π ls
∞

∑
k=1,3,5,···

n̂s,k Â
(2)
z,rad,k(r)





sin(kpθ)

sin
[
kp

(
θ − 2π

3p

)]

sin
[
kp

(
θ − 4π

3p

)]




(5.37)

Equation (5.37) can be considered to be a function of time by making use of (4.2).
Thus, ~λsm,rad(r, θ) = ~λsm,rad(r, θ(t)) = ~λsm,rad(r, t) with θ replaced by ωmt. The time
derivative of the flux linkage is the no-load voltage:

∂~λsm,rad(r, t)

∂t
= −π ls ωm

∞

∑
k=1,3,5,···

kp n̂s,k Â
(2)
z,rad,k(r)





cos(kpωmt)

cos
[
kp

(
ωmt − 2π

3p

)]

cos
[
kp

(
ωmt − 4π

3p

)]




.

(5.38)
Since the machine has a slotless stator, the flux linkages of the outer and inner

layers of the winding are different, as is evident from the fact that~λsm,rad is a function
of r. The value of r at which the flux linkage is chosen to be determined lies at the
centre of the winding, or r = rwc, to obtain an average value. The radius at the centre
of the winding is defined by:

rwc ≡
rso + rw

2
. (5.39)

Thus the flux linkage is now a function of time only and (5.38) becomes:

~ep,rad(t) =
d~λsm,rad(t)

dt

= −π ls ωm

∞

∑
k=1,3,5,···

kp n̂s,k Â
(2)
z,rad,k(rwc)





cos(kpωmt)

cos
[
kp

(
ωmt − 2π

3p

)]

cos
[
kp

(
ωmt − 4π

3p

)]




.

(5.40)
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Equation (5.40) is the no-load voltage of the machine fitted with a radial array.

5.7.6 Discrete Halbach array with two segments per pole

Similar to (5.40), the time derivative of the flux linkage of the stator winding due to
the discrete Halbach array with two segments per pole is:

~ep,dh2(t) = −π ls ωm

∞

∑
k=1,3,5,···

kp n̂s,k Â
(2)
z,dh2,k(rwc)





cos(kpωmt)

cos
[
kp

(
ωmt − 2π

3p

)]

cos
[
kp

(
ωmt − 4π

3p

)]




, (5.41)

where the peak value of the vector potential Â
(2)
z,dh2,k(rwc) is obtained from (5.23b)

and (5.15b).

5.7.7 Ideal Halbach array

Similar to (5.40), the time derivative of the flux linkage of the stator winding due to
the ideal Halbach array is:

~ep,ih(t) = −π ls ωm p n̂s,1 Â
(2)
z,ih(rwc)





cos(pωmt)

cos
[

p
(

ωmt − 2π
3p

)]

cos
[

p
(

ωmt − 4π
3p

)]




, (5.42)

where the peak value of the vector potential Â
(2)
z,ih(rwc) is obtained from (5.27b). Be-

cause the magnetic field of the ideal Halbach array contains only a fundamental
harmonic component, it only links with the fundamental space harmonic of the

winding. This can be seen from the fact that the integral
∫ π/p

0 cos(kpϕ) sin(pϕ)dϕ
is nonzero only for k = 1.

5.7.8 Results of the no-load voltage calculation

Figure 5.13 shows the radial component of the flux density at the centre of the air
gap for the three permanent-magnet arrays under discussion in this chapter.

Figure 5.14 shows the no-load voltages of the EµFER machine rotating at 30 000
rpm for the flux densities of Figure 5.13. In Figure 5.14(a) the line-neutral voltages
epa,rad(t), epa,dh2(t) and epa,ih(t), calculated from (5.40), (5.41), and (5.42) are shown.
Figure 5.14(b) shows the line-line voltages epab,rad(t), epab,dh2(t), and epab,ih(t), respec-
tively. The line-line voltage corresponds to the measured voltage between two line
terminals of the machine, and is calculated as the difference between two line-neutral
voltages: epab(t) = epa(t) − epb(t).

The magnet parameters used for the calculations of Figure 5.14 are the same as
those used in Section 5.6.
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Figure 5.13: Radial component of the flux density at the centre of the air gap, i.e., at

rwc, for the three permanent-magnet arrays.
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Figure 5.14: No-load voltage of the EµFER machine at a rotational speed of 30 000 rpm

for the three arrays: (a) line-neutral voltages epa,rad(t), epa,dh2(t) and

epa,ih(t); (b) line-line voltages epab,rad(t), epab,dh2(t) and epab,ih(t).

When one looks at the no-load voltage waveforms of Figure 5.14, the higher-
order harmonics do not appear to play a significant role. This is particularly so in the
line-line voltages of Figure 5.14(b). In fact, at first glance, the line-line voltage only
seems to consist of the fundamental harmonic, but this is not the case. (It is only
true for the ideal Halbach array.) When the amplitudes at the different harmonics
are plotted on a logarithmic scale, they can be clearly distinguished. Moreover, the
effect of the tangential magnets in the discrete Halbach array and the effect of the
winding distribution can be investigated in this way.

Figure 5.15 shows the normalized harmonic content of the flux density, winding
distribution and the no-load voltage, both the line-neutral voltages (Figures 5.15(a)
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and (c)) and the line-line voltages (Figures 5.15(b) and (d)).
The space harmonics at which the flux density, winding distribution and no-

load voltage are zero may be investigated from Figure 5.15. For example, the wind-
ing distribution is seen to be zero for k = 9, 27, · · · The reason for this comes from the
Fourier series used to represent it. This may be clearly seen from equation (A.15) in
Appendix A, where a direct Fourier analysis of the winding distribution was done.
(It may also be seen from the winding factor representation.) In (A.15), the Fourier
coefficient bk is zero for multiples of 9 since the arguments of all eight sine functions
making up bk are divided by 9. If the Fourier coefficient is zero, the whole function,
in this case the winding distribution, is also zero.

Also, from Figures 5.15(a) and (b), one can see that the radial component of the
flux density in the centre of the air gap for the radial array is zero for k = 5, 15, 25, · · ·
Once again this is a consequence of the Fourier-series representation of the flux den-
sity. Equation (5.12b) shows this clearly, where, since 2φm = 0.8π/p, φm = π/5, and
therefore the argument of the sine function in (5.12b) is 2kπ/5. This explains the fact
that Br,rad,k(rwc, t) is zero for all k that are multiples of 5.

For the discrete Halbach array, Br,dh2,k(rwc, t) 6= 0 for all k, as can be seen from
(5.18b) and (5.19b).

The product of the winding distribution and the flux density results in the no-
load voltage, up to a factor, as can be seen in (5.40), for example. (Recall that the
radial component of the flux density is obtained from the vector potential of (5.40)
by (4.23).) Therefore the no-load voltages of the two arrays will reflect the properties
of their flux densities. This is clearly seen in Figures 5.15(a) and (c), where the line-
neutral no-load voltages of the two arrays are shown. For the line-line voltage, the
fact that the triplen harmonics are zero is added, since in this thesis only balanced
three-phase currents are considered.

Thus, the harmonic content of Figures 5.15(a)—(d) can be summarized as fol-
lows:

• n̂s,k = 0 for k = 9, 27, · · ·

• radial array:

– Br,k = 0 for k = 5, 15, 25, · · ·
– epa,k = 0 for k = 9, 27, · · · , and k = 5, 15, 25, · · ·
– epab,k = 0 for k = 3, 9, 15, 21, · · · , and k = 5, 15, 25, · · ·

• discrete Halbach array with two segments per pole:

– Br,k 6= 0 for all k

– epa,k = 0 for k = 9, 27, · · ·
– epab,k = 0 for k = 3, 9, 15, 21, · · ·

For the ideal Halbach array:
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Figure 5.15: Normalized harmonic spectrum of the flux density, winding distribution

and the no-load voltage: (a) line-neutral voltage, radial array; (b) line-line

voltage, radial array; (c) line-neutral voltage, discrete Halbach array; (d)

line-line voltage, discrete Halbach array.

• n̂s,k = 0 for k = 9, 27, · · ·

• Br,k = 0 for all k 6= 1

• epa,k = 0 for all k 6= 1

• epab,k = 0 for all k 6= 1

The harmonic behavior described above is a direct consequence of the wind-
ing distribution and the polar magnet arc 2φm. These are physical properties of the
machine that may be varied to obtain certain desired harmonic properties of its no-
load voltage. As shown above, the choice of permanent-magnet array is also a very
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important factor to consider for controlling the harmonic content of the no-load volt-
age.

5.8 Experimental verification of the no-load voltage

The EµFER machine is constructed with a radial array. The reasons for this choice
will become clear in Chapter 8, where it will be shown that only a small amount of
torque is gained when the discrete Halbach array is used instead of the radial array.

Figure 5.16 compares an experimental measurement of the no-load voltage of
the EµFER machine with the prediction by the analytical model. For this measure-
ment, the flywheel was manually turned at a rotational speed of 159.1 rpm. This
resulted in a stator fundamental frequency of fs = 5.2645 Hz. The peak value of the
analytically predicted no-load voltage is 4.3% higher than the measured result. This
difference may be explained by the leakage field into the third dimension, which the
analytical model does not take into account.

Since both the frequency and amplitude of the no-load voltage are linear func-
tions of the rotational speed, the analytical predictions will also be accurate at the
operating speeds of between 15 000 and 30 000 rpm.
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Figure 5.16: Measured and predicted no-load voltage of the EµFER machine at a rota-

tional speed of 159.1 rpm.
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5.9 Summary and conclusions

This chapter focused on the field due to the permanent magnets and useful quantities
derived from this field. The chapter started with describing a method for solving for
the magnetic field in Section 5.2.

Sections 5.3—5.5 presented magnetic field solutions for the three permanent-
magnet arrays introduced in Chapter 3.

The analytically calculated flux density of the radial array was verified with the
FEM in Section 5.6.

Section 5.7 started the discussion on the derived field quantities by looking at
the flux linkage of the stator winding, leading to the machine’s no-load voltage. Sec-
tion 5.7 also showed how the harmonic content of the no-load voltage can be con-
trolled by means of three parameters:

• the winding distribution (number of slots, slot width, etc.);

• the polar magnet arc 2φm; and

• the permanent-magnet array.

The no-load voltage was verified experimentally in Section 5.8 for the EµFER
machine (which has a radial array) at a low rotational speed. Since both the fre-
quency and amplitude of the no-load voltage are linear functions of the rotational
speed, the analytical predictions will also be accurate at high rotational speeds.
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CHAPTER 6

The field due to the stator currents and derived quantities

6.1 Introduction

This chapter continues the development of an analytical model for the analysis and
design of external rotor slotless PMSMs. The ideas developed in this chapter will
once again be applied to the EµFER machine introduced in Chapter 3. In Chapter 5,
a simplified approach was developed for the field due to the permanent magnets.
This approach rested upon classical layer theory, outlined in Chapter 4, and was
applied to the four-layer cross section of Figure 5.1.

In this chapter, the shielding cylinder is included in the analysis. Since the cylin-
der experiences a high-frequency magnetic field, eddy currents will flow in it. These
induced eddy currents in the cylinder also give rise to a magnetic field, effectively
in “reaction” to the stator currents’ excitation. Hence the term “reaction field” of the
eddy currents in the shielding cylinder. This reaction field opposes the excitation
field of the stator currents, and therefore forms a “shield” for the high-frequency
fields so that they do not penetrate the magnets or rotor iron. Hence the term “shield-
ing cylinder”.

The six-layer cross section of the EµFER machine of Figure 4.1 stands central in
this chapter.

The current density in the air gap winding is the source of excitation under
investigation in this chapter, including the effect of the reaction field due to the eddy
currents in the shielding cylinder. Since the stator winding is located in the air gap in
an ironless structure, the stator current density Js may be used directly in the Poisson
equation (4.16).

In Section 6.2, the chapter starts with a literature review of work done by others
relevant to the two main contributions of this chapter: (i) the stator winding excita-
tion (air gap winding); and (ii) the influence of the eddy-current reaction field upon

105
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the field due to the stator currents. The field due to the air gap winding currents is
described in Sections 6.3—6.5, starting with the development of the current density
from the winding distribution (Section 6.3). Section 6.4 applies this to calculate the
field of the stator currents in all six regions due to the current density in the air gap
winding, including the effect of the reaction field of the eddy currents in the shield-
ing cylinder on this field. Some results of this field calculation is documented in
Section 6.5.

For a free rotor, the quantities derived from the magnetic field are the stator
main-field inductance (Section 6.6) and the induced eddy-current loss in the shield-
ing cylinder (Section 6.8). The latter will be illustrated with three stator current wave-
forms. The end-winding leakage inductance is briefly mentioned in Section 6.7, but
it is not calculated since the end windings are not included in the 2D-model. This
inductance is measured in Section 6.10, however.

For the locked-rotor tests, the locked-rotor machine impedance will be derived
in Section 6.9. Section 6.10 presents and discusses an experimental verification of the
locked-rotor machine impedance. Section 6.11 lists the machine’s voltage equation,
of which all quantities will by then be developed. The chapter is summarized and
concluded in Section 6.12.

6.2 Literature review

6.2.1 Literature review on air gap winding excitation

Some researchers have calculated the magnetic field in the air gap of machines with
slotted stators due to the stator currents; these are, among others, [Hug77], [Pol97]
and [Zhu93b] (with improvements in [Zhu02]). The approach here is to use an equiv-
alent surface current density, located at the stator surface. For a slotless stator, this
approach is not valid, and the field due to the current density in the air gap needs to
be calculated directly, which has been done in [Ata98] and [Sri95].

In this chapter, the field due to the current flowing in the air gap winding of a
PMSM is calculated. As in [Ata98] and [Sri95], the current density is obtained here
by a Fourier-series approximation of the current density for the whole winding re-
gion, developed directly from the three-phase winding distribution. The definition
of the current density introduced here is slightly different from that in [Ata98]. An-
other difference between [Ata98] and the work in this thesis is the way in which the
machine inductance is calculated. In [Ata98], the magnetic field energy is used to
obtain the inductance, while in this thesis, the inductance is calculated directly from
the magnetic vector potential, as has been shown in Chapter 4. The reason for this
is that it is simpler to use the magnetic vector potential for the field solutions in this
thesis than the field energy method.
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6.2.2 Literature review on eddy-current reaction fields

The effect of eddy currents upon the field was not considered in the references cited
above. In fact, the combination of a current density excitation in an air gap winding
and the reaction field of the eddy currents in the shielding cylinder has not been
described in literature. However, several researchers have looked at eddy current
fields with excitation sources other than a current density. Strictly speaking, the
excitation source is unimportant for the calculation of the eddy-current reaction field.
However, one aim of this thesis is to develop an analytical model of the complete
case-study machine introduced in Chapter 3, and therefore the combination of both
these concepts is important.

In the 1960s and 1970s, several textbooks on analytical solutions in electromag-
netics were published. Some of these authors also addressed eddy currents, like J.
Lammeraner [Lam66] and R.L. Stoll [Sto74]. Since then, many other publications
have also addressed the analytical calculation of the magnetic field due to eddy cur-
rents. See for example [Ant91], [Ng96], [Den97], [Den98], [Abu99], [Zhu01b] and
[Bol02]. Some of the works cited presented their results in Cartesian coordinates
([Lam66], [Sto74], [Ng96] and [Abu99]), while [Ant91], [Den97], [Den98], [Zhu01b]
and [Bol02] presented them in cylindrical coordinates. The latter also account for
curvature-effects. However, none of these authors solved a six-layer system and as
already mentioned, none used a current density in the air gap as excitation. The
contribution of this chapter then mainly lies in these aspects of the problem.

6.3 The stator current density

6.3.1 Introduction

To start the analysis, one needs an expression for the current density in the air gap
winding. To obtain the current density, the product of the winding distribution and
the stator current may be divided by the radius at the centre of the winding and the
winding height. For phase a this is:

Jsa(ϕ, t) =
nsa(ϕ)isa(t)

hwrwc
, (6.1)

where rwc is given by (5.39). The current densities of the other two phases are iden-
tical except for the subscripts of nsa and isa.

In the following two subsections, expressions for isa and Jsa are developed. The
winding distribution nsa was already obtained in Chapter 3, Section 3.7.

6.3.2 Stator current waveforms

In this thesis, only balanced three-phase conditions are considered. Therefore, all
triplen harmonics in the stator current waveforms are zero. In terms of the constant
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n̈ ∈ Z, related to the time harmonic by:

n = 6n̈ + 1, (6.2)

similar to (3.14), the stator current isa is written as:

isa(t) =
∞

∑
n̈=−∞

îs,6n̈+1 cos
[
(6n̈ + 1)ωst

]
. (6.3)

For phase b this is:

isb(t) =
∞

∑
n̈=−∞

îs,6n̈+1 cos
[
(6n̈ + 1)(ωst − 2π

3 )
]
. (6.4)

Phase c has same the expression, but with 2π
3 replaced by 4π

3 . The double-sided
Fourier series in (6.3) and (6.4) contain only non-triplen time harmonic components
of the stator current waveforms, exactly as given in Table 3.2 for the space harmonics
of the winding distribution.

6.3.3 Stator current density

The stator current density can be obtained from (3.16), (6.1) and (6.3). For phase a we
have in harmonic component form:

Jsa,6k̈+1,6n̈+1(ϕ, t) =
1

hwrwc

{
n̂s,6k̈+1 cos

[
(6k̈ + 1)pϕ

]}
·

{
îs,6n̈+1 cos

[
(6n̈ + 1)ωst

]}
. (6.5)

By rearranging the terms in (6.5) and by doing the double summation, one obtains
for the current density of phase a:

Jsa(ϕ, t) =
1

hwrwc

{
∞

∑
k̈=−∞

∞

∑
n̈=−∞

n̂s,6k̈+1 îs,6n̈+1 cos
[
(6k̈ + 1)pϕ

]
cos

[
(6n̈ + 1)ωst

]
}

.

(6.6)
Similarly, the current density of phase b is from (6.4):

Jsb(ϕ, t) =
1

hwrwc

{
∞

∑
k̈=−∞

∞

∑
n̈=−∞

n̂s,6k̈+1 îs,6n̈+1 cos
[
(6k̈ + 1)(pϕ − 2π

3 )
]

· cos
[
(6n̈ + 1)(ωst − 2π

3 )
]
}

. (6.7)

The expression for phase c is similar to (6.7), but with the term 2π
3 replaced by 4π

3 .
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Equations (6.6), (6.7) and the expression for Jsc(ϕ, t) can be rewritten by use of
the identity:

cos u cos v = 1
2

[
cos(u − v) + cos(u + v)

]
. (6.8)

Thus, for phase a:

Jsa(ϕ, t) =
1

hwrwc
·

{
∞

∑
k̈=−∞

∞

∑
n̈=−∞

1

2
n̂s,6k̈+1 îs,6n̈+1

{
cos

[
(6k̈ + 1)pϕ − (6n̈ + 1)ωst

]

+ cos
[
(6k̈ + 1)pϕ + (6n̈ + 1)ωst

]}
}

.

(6.9)

For phase b this is:

Jsb(ϕ, t) =
1

hwrwc
·

{
∞

∑
k̈=−∞

∞

∑
n̈=−∞

1

2
n̂s,6k̈+1 îs,6n̈+1

{
cos

[
(6k̈ + 1)pϕ − (6n̈ + 1)ωst − 6(k̈ − n̈) 2π

3

]

+ cos
[
(6k̈ + 1)pϕ + (6n̈ + 1)ωst − [6(k̈ + n̈) + 2] 2π

3

]}
}

,

(6.10)

with a similar expression for phase c.
The sum of these current densities results in the total current density in the stator

winding of the machine:

Js(ϕ, t) = Jsa(ϕ, t) + Jsb(ϕ, t) + Jsc(ϕ, t). (6.11)

Both clockwise and anticlockwise rotating travelling waves are contained in (6.11):
the travelling wave rotates clockwise if k̈ ≥ 0∧ n̈ ≥ 0 or k̈ < 0∧ n̈ < 0, and anticlock-
wise if k̈ < 0 ∧ n̈ ≥ 0 or k̈ ≥ 0 ∧ n̈ < 0.

The total current density Js may be obtained by inspection from (6.9) and (6.10).
By comparing the first cosine term in both equations, one sees that they are identical
except for the term 6(k̈ − n̈) 2π

3 . Therefore, the sum of these three cosine terms (phase
c also) may be represented by this simplification:

cos
[
x − y

]
+ cos

[
x − y − 6(k̈ − n̈) 2π

3

]
+ cos

[
x − y − 6(k̈ − n̈) 4π

3

]

=

{
3 cos

[
x − y

]
if 6(k̈ − n̈) is a multiple of 3

0 otherwise
(6.12)

The above reasoning may be applied to the whole of Js as:

Js(ϕ, t) =






3Jsa(ϕ, t) if 6(k̈ − n̈) = 3L, L ∈ Z,

i.e., if 2(k̈ − n̈) = L

0 otherwise

(6.13)
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Similarly, from the second cosine term in (6.9) and (6.10) may be deduced:

Js(ϕ, t) =






3Jsa(ϕ, t) if 6(k̈ + n̈) + 2 = 3M, M ∈ Z,

i.e. if 2(k̈ + n̈) + 2
3 = M

0 otherwise

(6.14)

The conditional in (6.13) is true for all k̈ and n̈, while that in (6.14) is false for all k̈
and n̈. Therefore, only the first cosine term contributes to the total current density,
and Js may be written as:

Js(ϕ, t) =
∞

∑
k̈=−∞

∞

∑
n̈=−∞

{
3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

} {
cos

[
(6k̈ + 1)pϕ − (6n̈ + 1)ωst

]}
. (6.15)

Equation (6.15) is written in the stator reference frame. For the rotor reference
frame, the stator angular variable ϕ should be replaced with the rotor angular vari-
able φ by means of equations (4.1) and (4.2):

ϕ = φ + θ = φ + ωmt + θ0/(6k̈ + 1), (6.16)

where θ0 is the initial rotor positional angle and ωm the fundamental of the mechan-
ical angular frequency. Substituting (6.16) into (6.15) results in the stator current
density as seen by the rotor, i.e. in the rotor reference frame:

Js(φ, t) =
∞

∑
k̈=−∞

∞

∑
n̈=−∞

{
3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

} {
cos

[
(6k̈ + 1)pφ + 6(k̈ − n̈)ωst + pθ0

]}
.

(6.17)

6.4 Solution of the magnetic field

6.4.1 Introduction

In Chapter 4, the Poisson equation with eddy-current effects upon the field, equation
(4.16), was introduced. For the permanent magnet field of Chapter 5, equation (4.16)
was simplified to (4.17).

In this chapter, the permanent magnet excitation is set to zero and the field due
to the stator currents is solved, including the effect in all the regions of the eddy
currents in the shielding cylinder. Therefore, equation (4.16) is simplified to (4.18),
or:

−∇2A + µσ
∂A

∂t
= µJs. (6.18)

With the 2D-simplifications discussed in Chapter 4, this equation is:

∂2 Az

∂r2
+

1

r2

∂2 Az

∂φ2
+

1

r

∂Az

∂r
+ µσ

∂Az

∂t
= −µJs,z. (6.19)
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Table 6.1 lists the machine regions shown in Figure 4.1(a), with the relative per-
meability of the material and the governing equation used to solve for A from (6.19)
in each of these regions. As can be seen from Table 6.1, for regions 1, 3, 5 and 6, the
Poisson equation simply becomes the Laplace equation −∇2A = 0, and therefore
it has the same solution form, differing only in the boundary conditions. Regions 2
and 4 (stator winding and shielding cylinder) demand special care in their solution.

In the next few sections, a solution to the complete system is systematically de-
veloped. The result is an expression for the k-th space and n-th time harmonic com-
ponents of the vector potential in all six regions of the machine, as a function of the
two positional coordinates r and ϕ (or φ), and time t.

The solution procedure is identical to that outlined in Section 5.2.3 for the field
due to the magnets. The form of the solution is also similar to (5.8), with two impor-
tant differences:

• The solution developed in this chapter is in terms of both the space and time
harmonics k and n, whereas the solution in Chapter 5 was only in terms of the
space harmonic.

• The trigonometric expression of (5.8a) is written in this chapter in the complex
exponential form. This is done to facilitate the calculation of a derived quantity
(the Poynting vector) for the stator current field later on in this chapter and for
the combined field in Chapter 7. The real part of the complex vector potential
Āz is the part with physical significance:

Az(r, φ, t) ≡ Re
{

Āz(r, φ, t)
}

. (6.20)

ν Description Range for r µ
(ν)
r Governing equation

1 Stator iron rsi ≤ r < rso ∞ −∇2A = 0

2 Winding region rso ≤ r < rw 1 −∇2A = µJs

3 Mechanical air gap rw ≤ r < rci 1 −∇2A = 0

4 Shielding cylinder rci ≤ r < rco 1 −∇2A + µσ ∂A
∂t = 0

5 Permanent magnets rco ≤ r < rmo 1 −∇2A = 0

6 Rotor iron rmo ≤ r ≤ rro ∞ −∇2A = 0

Table 6.1: Machine regions defined for the calculation of the vector potential from

equation (4.16) due to the stator currents, including the reaction field due

to the eddy currents in the shielding cylinder.
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6.4.2 Solution in Region 4: The shielding cylinder

Introduction

It is important to choose the correct coordinate system within which to solve the
system of PDEs. Since the shielding cylinder is fixed to the rotor, the obvious choice
for the solution in the cylinder itself, region 4, is the rotor coordinate system. This
means that also the excitation Js, as expressed in the rotor coordinate system by
equation (6.17), needs to be used, even though the winding is physically stationary.

The fundamental space and time harmonic of the stator current density will then
appear as stationary in the solution, since the whole coordinate system is rotating
with this travelling wave.

It is also important to note that if the rotor coordinate system is used to obtain
the solution in the shielding cylinder, that the whole system of PDEs needs to be solved
in this coordinate system to satisfy the boundary conditions.

From Table 6.1, the governing equation for the shielding cylinder region is for
the complex vector potential Ā:

∇2Ā = µσ
∂Ā

∂t
, (6.21)

which can be rewritten in cylindrical coordinates from (6.19) as:

∂2 Āz

∂r2
+

1

r2

∂2 Āz

∂ϕ2
+

1

r

∂Āz

∂r
= µσ

∂Āz

∂t
, (6.22)

the time and space harmonic component of which is:

∂2 Āz,6k̈+1,6n̈+1

∂r2
+

1

r2

∂2 Āz,6k̈+1,6n̈+1

∂ϕ2
+

1

r

∂Āz,6k̈+1,6n̈+1

∂r
= µσ

∂Āz,6k̈+1,6n̈+1

∂t
. (6.23)

In (6.23), k̈ and n̈ are related to the space and time harmonics k and n by (3.14) and
(6.2), respectively.

Before the solution is constructed, the current density has to be changed to com-
plex exponential form as motivated in Section 6.4.1.

Current density for when the rotor rotates synchronously with the stator field

The stator current density in rotor coordinates was given by (6.17). The rotor coor-
dinate solution is the solution, and it may also be seen as the case where the rotor
rotates synchronously with the stator field. Equation (6.17) was written in trigono-
metric form. We obtain for the k-th space and n-th time harmonic in complex har-
monic form:

Js,6k̈+1,6n̈+1(φ, t) =

{
3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}
e−j

[
(6k̈+1)pφ+6(k̈−n̈)ωst+pθ0

]
. (6.24)

The k-th space and n-th time harmonic of equation (6.17) is the real part of (6.24).
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Current density for a locked rotor

The locked-rotor form of (6.24) is, by use of (6.16) with ωm = 0:

Js,6k̈+1,6n̈+1(ϕ, t) =

{
3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}
e−j

[
(6k̈+1)pϕ−6(n̈−1)ωst

]
. (6.25)

Assumed solution for a synchronously rotating rotor

The assumed solution of Āz for a synchronously rotating rotor is chosen to comply
with the stator current density for this case, equation (6.24):

Āz(r, φ, t) =
∞

∑
k̈=−∞

∞

∑
n̈=−∞

ˆ̄Az,6k̈+1,6n̈+1(r)

{
3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}
e−j

[
(6k̈+1)pφ+6(k̈−n̈)ωst+pθ0

]
.

(6.26)
The space and time harmonic component of (6.26) is:

Āz,6k̈+1,6n̈+1(r, φ, t) = ˆ̄Az,6k̈+1,6n̈+1(r)

{
3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}
e−j

[
(6k̈+1)pφ+6(k̈−n̈)ωst+pθ0

]
,

(6.27)
with partial time derivative:

∂

∂t
Āz,6k̈+1,6n̈+1(r, φ, t) =

− 6j(k̈ − n̈)ωs
ˆ̄Az,6k̈+1,6n̈+1(r)

{
3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}
e−j

[
(6k̈+1)pφ+6(k̈−n̈)ωst+pθ0

]
. (6.28)

Equation (6.28) may be rewritten from (6.27) as:

∂

∂t
Āz,6k̈+1,6n̈+1(r, φ, t) = −6j(k̈ − n̈)ωs Āz,6k̈+1,6n̈+1(r, φ, t). (6.29)

Substituting (6.29) into the right-hand side of (6.23) results in:

µσ
∂

∂t
Āz,6k̈+1,6n̈+1(r, φ, t) ≡ τ̄2

6k̈+1,6n̈+1
Āz,6k̈+1,6n̈+1(r, φ, t), (6.30)

where a constant τ̄2
6k̈+1,6n̈+1

has been defined as:

τ̄2
6k̈+1,6n̈+1

≡ −6jµσ(k̈ − n̈)ωs. (6.31)

Assumed solution for a locked rotor

To comply with the stator current density for a locked rotor, equation (6.25), the k-th
space and n-th time harmonic of the assumed solution of Āz is for this case:

Āz,6k̈+1,6n̈+1(r, ϕ, t) = ˆ̄Az,6k̈+1,6n̈+1(r)

{
3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}
e−j

[
(6k̈+1)pϕ−(6n̈+1)ωst

]
.

(6.32)
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In this case, the the right-hand side of (6.23) is:

µσ
∂

∂t
Āz,6k̈+1,6n̈+1(r, ϕ, t) ≡ τ̄2

6n̈+1 Āz,6k̈+1,6n̈+1(r, ϕ, t), (6.33)

where the constant τ̄2
6n̈+1 is not a function of the space harmonic anymore as in (6.31):

τ̄2
6n̈+1 ≡ jµσ(6n̈ + 1)ωs. (6.34)

In the next subsection it will be shown that due to the different constants
τ̄2

6k̈+1,6n̈+1
and τ̄2

6n̈+1 of (6.31) and (6.34), the solution of the differential equations

in Region 4 is different for the rotating and locked-rotor cases.

6.4.3 Solution in Region 4 for a synchronously rotating rotor

As in Chapter 5, here product solutions also form the basis of the solutions. If a
product solution is assumed for the vector potential in the shielding cylinder for a
synchronously rotating rotor, i.e.,

Āz,6k̈+1,6n̈+1(r, φ, t) = R̄6k̈+1,6n̈+1(r)F̄6k̈+1,6n̈+1(φ, t), (6.35)

then equation (6.23) can be rewritten as:

[
r2

R̄6k̈+1,6n̈+1

d2R̄6k̈+1,6n̈+1

dr2
+

r

R̄6k̈+1,6n̈+1

dR̄6k̈+1,6n̈+1

dr

]

+

[
1

F̄6k̈+1,6n̈+1

d2 F̄6k̈+1,6n̈+1

dφ2

]
= τ̄2

6k̈+1,6n̈+1
r2, (6.36)

which is separated into two ordinary differential equations. Therefore these two
ordinary differential equations can be written as:

1

F̄6k̈+1,6n̈+1

d2 F̄6k̈+1,6n̈+1

dφ2
≡ −(6k̈ + 1)2, (6.37)

and:

r2
d2R̄6k̈+1,6n̈+1

dr2
+ r

dR̄6k̈+1,6n̈+1

dr
−

[
τ̄2

6k̈+1,6n̈+1
r2 + (6k̈ + 1)2

]
R6k̈+1,6n̈+1 = 0. (6.38)

Equation (6.38) is a modified Bessel equation [McL55].

Solution for R̄

From (6.31) it can be seen that if the space and time harmonics are equal to one
another, i.e. 6k̈ + 1 = 6n̈ + 1, then τ̄2

6k̈+1,6n̈+1
= 0. This leads to the modified Bessel

equation (6.38), reducing to a non-Bessel equation. In fact, it reduces to the same
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differential equation as the one obtained in the solution of the magnetic fields due to
the permanent magnets in Chapter 5. Therefore, the solution to (6.38) is separated
into the two cases where k̈ = n̈ and k̈ 6= n̈. Thus, a general solution to (6.38) can be
written as:

R̄6k̈+1,6n̈+1(r) =






c̄6k̈+1,6n̈+1 I6k̈+1(τ̄6k̈+1,6n̈+1r) + d̄6k̈+1,6n̈+1K6k̈+1(τ̄6k̈+1,6n̈+1r)

if k̈ 6= n̈

c̄6k̈+1,6n̈+1

(
r
r4

)−|6k̈+1|p
+ d̄6k̈+1,6n̈+1

(
r
r4

)|6k̈+1|p
if k̈ = n̈,

(6.39)
where I6k̈+1 and K6k̈+1 are modified Bessel functions of the first and second kind of

order 6k̈ + 1, and c̄6k̈+1,6n̈+1 and d̄6k̈+1,6n̈+1 are constants to be determined from the
boundary conditions. Bessel functions are briefly summarized in Appendix C.

Solution for F̄

The general solution to (6.37) was discussed in Chapter 5 and may be written in
many forms. By choosing a form similar to the solution of the vector potential (6.27),
we have:

R̄6k̈+1,6n̈+1(φ, t) = a6k̈+1,6n̈+1e−j
[
(6k̈+1)pφ+6(k̈−n̈)ωst+pθ0

]
, (6.40)

with a6k̈+1,6n̈+1 a boundary condition constant.

Product solution R̄F̄

The k-th space and n-th time harmonic of the solution to Poisson’s equation (6.23) in
the shielding cylinder (ν = 4) is, from (6.35), (6.39) and (6.40):

Āz,6k̈+1,6n̈+1(r, φ, t) = ˆ̄Az,6k̈+1,6n̈+1(r)

{
3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}
e−j

[
(6k̈+1)pφ+6(k̈−n̈)ωst+pθ0

]
;

(6.41a)

ˆ̄Az,6k̈+1,6n̈+1(r) =






C̄
(ν)

6k̈+1,6n̈+1
I6k̈+1(τ̄6k̈+1,6n̈+1r) + D̄

(ν)

6k̈+1,6n̈+1
K6k̈+1(τ̄6k̈+1,6n̈+1r)

if k̈ 6= n̈

C̄
(ν)

6k̈+1,6n̈+1

(
r
r4

)−|6k̈+1|p
+ D̄

(ν)

6k̈+1,6n̈+1

(
r
r4

)|6k̈+1|p
if k̈ = n̈,

(6.41b)
where the boundary condition constants a6k̈+1,6n̈+1 c̄6k̈+1,6n̈+1 and a6k̈+1,6n̈+1d̄6k̈+1,6n̈+1

have been replaced by C̄
(ν)

6k̈+1,6n̈+1
and D̄

(ν)

6k̈+1,6n̈+1
, respectively.

The fact that the solution is different for the two cases in (6.41b) has the con-
sequence that the boundary condition constants are different, not only in Region 4,
but in all the regions. This is not explicitly indicated in the solutions of the differ-
ent regions in this chapter, but implicitly in the indices of the boundary condition
constants. If this was not done, i.e., if different boundary condition constants were
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introduced for the two different cases, the equations would have been unnecessarily
complicated by more symbols. The fact that the solution in the winding region, dis-
cussed in Section 6.4.5, also has two cases in its solution, makes this argument even
stronger.

6.4.4 Solution in Region 4 for a locked rotor

Since the constant τ̄6n̈+1 of (6.34) does not contain the space harmonic, it is valid for
all k̈ and n̈. This means the differential equation for R̄ is a modified Bessel equation
for all k̈ and n̈ and the solution for a locked rotor do not have two cases as in Sec-
tion 6.4.3 for a synchronously rotating rotor. From (6.32) and (6.41b) the solution is:

Āz,6k̈+1,6n̈+1(r, ϕ, t) = ˆ̄Az,6k̈+1,6n̈+1(r)

{
3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}
e−j

[
(6k̈+1)pϕ−6(n̈+1)ωst

]
;

(6.42a)

ˆ̄Az,6k̈+1,6n̈+1(r) = C̄
(ν)

6k̈+1,6n̈+1
I6k̈+1(τ̄6k̈+1,6n̈+1r) + D̄

(ν)

6k̈+1,6n̈+1
K6k̈+1(τ̄6k̈+1,6n̈+1r).

(6.42b)

6.4.5 Solution in Region 2: The stator winding

Introduction

In the stator winding, the governing equation for this region is, from Table 6.1:

∇2Ā = −µJ̄s, (6.43)

which can be rewritten in cylindrical coordinates and with the assumptions made
earlier in this chapter as:

∂2 Āz

∂r2
+

1

r2

∂2 Āz

∂φ2
+

1

r

∂Āz

∂r
= −µ J̄s, (6.44)

the time and space harmonic component of which is:

∂2 Āz,6k̈+1,6n̈+1

∂r2
+

1

r2

∂2 Āz,6k̈+1,6n̈+1

∂φ2
+

1

r

∂Āz,6k̈+1,6n̈+1

∂r
= −µ J̄s,6k̈+1,6n̈+1. (6.45)

Homogeneous solution

The solution to the Poisson equation (6.45) can be written as the sum of a homoge-
neous and a particular solution as follows:

Āz,6k̈+1,6n̈+1(r, φ) = Āhom,z,6k̈+1,6n̈+1(r, φ) + Āpart,z,6k̈+1,6n̈+1(r, φ), (6.46)
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where the homogeneous solution Āhom,z,6k̈+1,6n̈+1(r, φ) satisfies the Laplace equation
associated with (6.45), i.e.:

∂2 Āz,6k̈+1,6n̈+1

∂r2
+

1

r2

∂2 Āz,6k̈+1,6n̈+1

∂φ2
+

1

r

∂Āz,6k̈+1,6n̈+1

∂r
= 0, (6.47)

and the particular solution Āpart,z,6k̈+1,6n̈+1(r, φ) satisfies (6.45).

The homogeneous solution is similar to (5.6), but now the more general expo-
nential form is chosen instead of the trigonometric form. It is given (without the
subscript hom) by:

Ā
(ν)

z,6k̈+1,6n̈+1
(r, φ, t) = ˆ̄A

(ν)

z,6k̈+1,6n̈+1
(r)

{
3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}
e−j

[
(6k̈+1)pφ+6(k̈−n̈)ωst+pθ0

]
;

(6.48a)

ˆ̄A
(ν)

z,6k̈+1,6n̈+1
(r) = C̄

(ν)

6k̈+1,6n̈+1

(
r

r2

)−|6k̈+1|p
+ D̄

(ν)

6k̈+1,6n̈+1

(
r

r2

)|6k̈+1|p
, (6.48b)

where ν again indicates the region, in this case ν = 2.

Particular solution

In the solution to Poisson’s equation (6.45), equation (6.48) forms the homogeneous

part of the solution, Ā
(ν)

hom,z,6k̈+1,6n̈+1
(r, φ, t). The particular solution may be written

as:

Ā
(ν)

part,z,6k̈+1,6n̈+1
(r, φ, t) = ˆ̄A

(ν)

part,z,6k̈+1
(r)

{
3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}
e−j

[
(6k̈+1)pφ+6(k̈−n̈)ωst+pθ0

]
.

(6.49)
Therefore, the k-th space and n-th time harmonic component of the solution to Pois-
son’s equation (6.45) can be written as:

Ā
(ν)

z,6k̈+1,6n̈+1
(r, φ, t) = ˆ̄A

(ν)

z,6k̈+1,6n̈+1
(r)

{
3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}
e−j

[
(6k̈+1)pφ+6(k̈−n̈)ωst+pθ0

]
;

(6.50a)

ˆ̄A
(ν)

z,6k̈+1,6n̈+1
(r) = C̄

(ν)

6k̈+1,6n̈+1

(
r

r2

)−|6k̈+1|p

+ D̄
(ν)

6k̈+1,6n̈+1

(
r

r2

)|6k̈+1|p
+ ˆ̄A

(ν)

part,z,6k̈+1
(r). (6.50b)

For an excitation as given by (6.25), the k-th space and n-th time harmonic com-
ponent of the peak value of the particular solution in the winding region (ν = 2)
is:

ˆ̄A
(ν)

part,z,6k̈+1
(r) =






µr2

[(6k̈+1)p]
2−4

if (6k̈ + 1)p 6= 2

1
4 µr2

(
− ln(r) + 1

4

)
if (6k̈ + 1)p = 2

(6.51)
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It can be seen that the peak value is the same for all time harmonics.

Solution for a locked rotor

Equation (6.50) was developed for a synchronously rotating rotor. To obtain the

corresponding solution for a locked rotor, the term e−j
[
(6k̈+1)pφ+6(k̈−n̈)ωst+pθ0

]
is

replaced by e−j
[
(6k̈+1)pϕ−(6n̈+1)ωst

]
.

6.4.6 Solution in Regions 1, 3, 5 and 6

The k-th space and n-th time harmonic component of the general solution to the
Laplace equation (6.47) is given by (6.48). This solution is valid in regions 1, 3, 5
and 6.

6.4.7 Conclusive remarks

It should be remembered that the solution in the winding region had two cases: one
for (6k̈ + 1)p 6= 2 and one for (6k̈ + 1)p = 2, and the solution in the shielding cylinder
also had two cases: one for k̈ 6= n̈ and one for k̈ = n̈. This leads to four different cases,
each for which the entire system of boundary condition constants of the solutions to
the PDEs in all six regions had to be solved. The boundary condition constants were
solved from the boundary condition equations (5.3) and (5.4) in MAPLE R© V. The
complete system of solutions was implemented in MATLAB R© 5.

In summary, the solutions in the different regions are, for a synchronously ro-
tating rotor:

• Regions 1,3,5 and 6: Ā
(ν)

z,6k̈+1,6n̈+1
(r, φ, t) given by (6.48);

• Region 2: Ā
(ν)

z,6k̈+1,6n̈+1
(r, φ, t) given by (6.50) for two different cases:

(6k̈ + 1)p 6= 2 and (6k̈ + 1)p = 2; and

• Region 4: Ā
(ν)

z,6k̈+1,6n̈+1
(r, φ, t) given by (6.41) for the two different cases k̈ 6= n̈

and k̈ = n̈ of equation (6.51).

For each of the four different cases, the whole system of PDEs was solved in all six
regions. The boundary condition constants therefore reflect these different cases. A
summary is shown in Figure 6.1.

For the solution for a locked rotor, the difference between cases k̈ 6= n̈ and k̈ = n̈
disappears, i.e., only the first line of (6.41b) is valid with τ̄6k̈+1,6n̈+1 replaced by τ̄6n̈+1.
In Figure 6.1, only the top branch is now valid. The final change is to replace the term

e−j
[
(6k̈+1)pφ+6(k̈−n̈)ωst+pθ0

]
with e−j

[
(6k̈+1)pϕ−6(n̈+1)ωst

]
.
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for ν = 1, 2, 3, 4, 5, 6 and k̈, n̈ ∈ Z

Figure 6.1: Summary of different cases for a synchronously rotating rotor for the

boundary condition constants.

6.5 Results of the magnetic field solution

Investigating the magnetic flux density at a DC current in the stator winding gives
some insight into the effect of the slotless winding and its distribution on the mag-
netic field.

For the solution of the system of PDEs for DC currents, equation (6.41) for k̈ = n̈
should be used, since in this case, the time harmonic actually does not exist. The dif-
ferential equation in the shielding cylinder region is thus a non-Bessel equation. The
lower branch of Figure 6.1 is used to determine the boundary condition constants for
DC currents.

Figure 6.2 shows the magnetic flux density at four different radii for a locked
rotor due to the currents ia = 0, ib = 260.6A = −ic flowing in the air gap winding.
The slotting effect of the 1-2-2-1 winding distribution of Figure 3.8 on the magnetic
field can clearly be identified in Figure 6.2.

For a synchronously rotating rotor, Figure 6.3 shows the magnetic field lines
due to AC stator currents in the air gap winding. In Figure 6.3(a), the flux lines
for the fundamental space harmonic k = 1 and fundamental time harmonic n = 1
are shown, while Figure 6.3(b) shows the same space harmonic with the fifth time
harmonic component. It can clearly be seen from Figure 6.3(b) that the shielding
cylinder almost perfectly shields the magnets even at frequencies as low as the fifth
time harmonic, while in Figure 6.3(a), the magnetic field passes through the cylinder,
as would be expected. This result was calculated for a typical current waveform of a
current source inverter (CSI) for a rotational speed of the flywheel of 30 000 rpm.

For the field calculation of Figure 6.3, the radial and tangential components
of the flux density at several different radii for a synchronously rotating rotor are
shown in Figure 6.4. Figure 6.4 shows the flux density for three different time har-
monics: (a) n = 1, (b) n = 5, and (c) n = 11. In all three, the space harmonic compo-
nents were added for k = 1, 5, 7, 11, 13. The calculation of Figure 6.4 was done at two
radii: rwc in the centre of the air gap and rmc in the centre of the permanent-magnet
array.
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Figure 6.2: Radial component of the flux density at several different radii for a locked

rotor due to the currents ia = 0, ib = 260.6A = −ic flowing in the air gap

winding.

Figure 6.4 shows the shielding effect of the shielding cylinder in another way
than Figure 6.3. In Figure 6.4(a) for n = 1, the field at the centre of the winding
contains higher space harmonics, which are filtered out at the centre of the magnets,

r so r w r ci
r co

r mo r ro r so r w r ci
r co

r mo r ro

(a) (b)

Figure 6.3: Magnetic field lines for a synchronously rotating rotor due to AC stator

currents in the air gap winding, including the eddy-current reaction field

of the shielding cylinder, for: (a) k = 1, n = 1; (b) k = 1, n = 5.
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hence only the fundamental space harmonic is present. Similarly, Figure 6.4(b) for
n = 5 shows that higher space harmonics are present in the field at rwc, but only the
fifth space harmonic is allowed to pass through the shielding cylinder, as is evident
from the waveform at rmc. This effect also occurs in Figure 6.4(c), but the eleventh
space harmonic is too small to see.

The magnetic field calculation model is hereby concluded. As in Chapter 5 for
the permanent-magnet field, the next section starts with the derivation of useful
quantities from this field. Particularly, the subject under attention in the next sec-
tion is the flux linkage of the stator winding due to the field just derived, from which
the stator main-field inductance naturally follows.
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Figure 6.4: Magnetic flux density for a synchronously rotating rotor due to AC stator

currents in the air gap winding, including the eddy-current reaction field of

the shielding cylinder. Results for two radii are shown: at the centre of the

winding and at the centre of the permanent magnets. These results were

calculated as the sum of space harmonics k = 1, 5, 7, 11, 13. Time harmonics

are: (a) n = 1; (b) n = 5; and (c) n = 11.



122 Chapter 6

6.6 The stator main-field inductance

6.6.1 Introduction

For the calculation of the flux linkage, equation (5.32) is valid for any magnetic field
source, as discussed in Chapter 5. Therefore, for the flux linkage of the stator wind-
ing due to the stator currents, the vector potential due to the stator currents should
be substituted into (5.32). In the next two subsections, this flux linkage is worked
out, leading to the machine’s main-field inductance. The next subsection discusses
the calculation and the one after that presents the calculated machine inductance for
the EµFER machine.

Assumptions

Two assumptions are made for the inductance calculations. They are:

• Symmetry. For the inductance, symmetry is assumed. This means that the in-
ductance of one phase is equal to that of the others and that the mutual induc-
tances are also equal for all three phases. For this assumption, the flux linkage
may be written in a general form as follows:





λssa

λssb

λssc



 =





L M M

M L M

M M L









isa

isb

isc



 (6.52)

• Balanced three-phase currents. For balanced three-phase currents, the triplen
terms are zero and the non-triplen mutual inductance terms are all equal to
each other. Thus, equation (6.52) may be written as:





λssa

λssb

λssc



 =





L − M 0 0

0 L − M 0

0 0 L − M









isa

isb

isc



 (6.53)

Since the non-triplens have already been neglected in this thesis, the flux link-
age resulting from the method documented in the next sections is of the form
(6.53).

6.6.2 Calculation

The vector potential in the air gap due to the stator currents was written in complex
form in this chapter. For the flux linkage, the real part is explicitly used, given by

(6.20). Thus in this section, the real part of Ā
(ν)

z,6k̈+1,6n̈+1
(r, φ, t) will be used, indicated

by A
(ν)

z,6k̈+1,6n̈+1
(r, φ, t), where ν = 2.
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The flux linkage of winding a due to the stator currents is, from (5.32):

λssa,6k̈+1,6n̈+1(t) = 2p ls

π/p∫

0

nsa(ϕ) A
(2)

z,6k̈+1,6n̈+1
(rwc, ϕ, t) dϕ, (6.54)

where the flux linkage integral is located at r = rwc, the centre of the winding. From
(3.10) and (6.25), equation (6.54) may be written, in stator coordinates, as:

λssa,6k̈+1,6n̈+1(t) = 2plsn̂s,k

{
3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}
Â

(2)

z,6k̈+1,6n̈+1
(rwc)·

·
π/p∫

0

cos
[
(6k̈ + 1)pϕ

]
cos

[
(6k̈ + 1)pϕ − (6n̈ + 1)ωst

]
dϕ. (6.55)

If (6.55) is integrated, one obtains:

λssa,6k̈+1,6n̈+1(t) = πls

{
3

2

n̂2
s,6k̈+1

hwrwc

}
Â

(2)

z,6k̈+1,6n̈+1
(rwc) îs,6n̈+1 cos

[
(6n̈ + 1)ωst

]

= πls

{
3

2

n̂2
s,6k̈+1

hwrwc

}
Â

(2)

z,6k̈+1,6n̈+1
(rwc) isa,6n̈+1(t).

(6.56)

The last line follows from (6.3). The stator self-inductance of phase a is therefore:

Lssa,6k̈+1,6n̈+1 = πls

{
3

2

n̂2
s,6k̈+1

hwrwc

}
Â

(2)

z,6k̈+1,6n̈+1
(rwc). (6.57)

The frequency dependency of Lssa is implicitly contained in the peak value of the

vector potential Â
(2)

z,6k̈+1,6n̈+1
(rwc), which actually comes from the boundary condi-

tion constants in terms of which it is obtained (see (6.41b)). These constants are a
function of the constant τ̄6k̈+1,6n̈+1 of (6.31), which is a function of frequency.

The vector potential in (6.57) was obtained from the total current density of the
winding, which is the sum of the three current densities due to the three phases,
from (6.11). This means that (6.57) is of the form of the matrix in (6.53), and therefore
a vector notation for the three-phase flux linkage of the stator winding due to the
stator currents may be introduced as:

~λss,6k̈+1,6n̈+1(t) = Lss,6k̈+1,6n̈+1
~is,6n̈+1(t). (6.58)

Since the matrix in (6.53) is zero for the non-diagonal terms, the inductance of (6.58)
is simply a scalar, given by (6.57). The sum over all space and time harmonic compo-
nents of the flux linkage (6.58) is needed for the voltage equation of (5.29). It is given
by:

d~λss(t)

dt
=

∞

∑
k̈=−∞

∞

∑
n̈=−∞

Lss,6k̈+1,6n̈+1

d

dt
~is,6n̈+1(t). (6.59)
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6.6.3 Results

For the EµFER machine, the inductance Lssa,6k̈+1,6n̈+1 of (6.57) is listed in Table 6.2.
The space harmonic components are listed in the rows and the time harmonic com-
ponents in the columns. It can clearly be seen that the space harmonics only have
a small influence on the inductance; the 5th space harmonic component for n = 1
is approximately 1000 times smaller than the fundamental space harmonic compo-
nent, and even smaller for the higher space harmonics. This is due to the fact that
the winding is situated in the air gap on a slotless stator.

One can also see from Table 6.2 that the inductance changes to a lower value
when the frequency changes from the 1st time harmonic to the 5th, and then stays
fairly constant for the time harmonic components above the 5th. This is due to the
fact that the shielding cylinder almost completely shields at the 5th time harmonic,
as can be seen also from Figure 6.3. Any increase in frequency above this does not
significantly change the shielding effect. The total inductance (sum of the space har-
monic components up to k = 19 in Table 6.2) is 38.5 µH for n = 1 and 4.69 µH for
n = 19.

Practically, this means that the converter connected to the EµFER machine will
“see” 38.5 µH for the fundamental time harmonic of the current, since the rotor turns
synchronously with this field. All higher-order harmonics will “see” the lower value
of 4.69 µH. For a CSI this inductance plus the end-winding leakage inductance will
therefore be the inductance to be reckoned with for commutation intervals, since
these are in the order of microseconds.

k \ n 1 5 7 11 13 17 19

1 38.42 4.649 4.647 4.641 4.638 4.631 4.627

5 0.0338 0.0729 0.0339 0.0338 0.0338 0.0337 0.0337

7 0.0032 0.0032 0.0054 0.0032 0.0032 0.0032 0.0032

11 0.0009 0.0009 0.0009 0.0012 0.0009 0.0009 0.0009

13 0.0024 0.0024 0.0024 0.0024 0.0029 0.0024 0.0024

17 0.0205 0.0205 0.0205 0.0205 0.0205 0.0225 0.0205

19 0.0061 0.0061 0.0061 0.0061 0.0061 0.0061 0.0065

Table 6.2: The k-th and n-th component of the main-field inductance Lss [µH] for the

EµFER machine, calculated from (6.57).

6.7 Leakage inductance

The flux linkage of the stator winding due to leakage flux is, for non-triplen harmo-
nics:

~λsσ(t) = Lsσ~is(t), (6.60)
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where the stator leakage inductance is given by:

Lsσ = Lsσa − Msσab. (6.61)

In (6.61), due to symmetry, Msσab is equal to the mutual leakage inductance between
every pair of phases, and Lsσa = Lsσb = Lsσc.

The time derivative of (6.60) is:

d~λsσ(t)

dt
= Lsσ

d~is(t)

dt
. (6.62)

In general, the leakage inductance in electrical machines consists of the slot leak-
age, air gap leakage and end-winding leakage. Since the machine under considera-
tion is slotless, what is conventionally the slot leakage inductance is now included in
(6.57). The air gap leakage inductance is also included in the main-field inductance
Lss,k,n of equation (6.57) because the calculation of Lss,k,n takes the two-dimensional
air gap field into account. The only component of the leakage inductance of the
flywheel machine is therefore the end-winding leakage inductance. Since the end
windings of the machine are in the third dimension, the analytical field model can-
not take them into account.

6.8 Induced loss in the shielding cylinder due to the

field of the stator currents

6.8.1 Introduction

In the previous two sections, the stator inductance was discussed. The stator main-
field inductance of Section 6.6 was calculated directly from the vector potential in the
winding region. Another important quantity is the loss in the shielding cylinder due
to the eddy currents flowing there. Like the inductance this is also a quantity derived
from the magnetic field of the stator currents only, and it is therefore included in this
chapter.

Several researchers have published on analytical calculation of loss in the shiel-
ding cylinders of PMSMs. The loss may be calculated by either taking the volume
integral of the current density in the shielding cylinder [Zhu01a], [Vee97], or the sur-
face integral of the Poynting vector, as in [Den97], [Den98], [Abu99] and [Zhu01b].
Since the solutions for the vector potential obtained in this chapter contain complex
Bessel functions, avoiding the volume integral is highly recommended.

Poynting’s Theorem, listed in Appendix B, may be used to obtain the loss in the
shielding cylinder since it describes the total power crossing the air gap. When one
calculates in rotor coordinates, the only power component is the power dissipated in
the shielding cylinder. This is because in rotor coordinates, the coordinate system ro-
tates synchronously with the fundamental harmonic of the stator field and therefore
it cannot “see” the power it transfers to the field of the magnets. In Chapter 7, the cal-
culation is repeated in stator coordinates in order to calculate the power associated
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with the fundamental time and space harmonic and to convert it into electromag-
netic torque.

6.8.2 Calculation

The calculation starts by finding the surface integral of the Poynting vector intro-
duced in equation (4.41) of Section 4.6, but here in rotor coordinates:

−
∮

S

ˆ̄S′ · da = πr′ls Ē′
zH̄

′∗
φ , (6.63)

where the electric and magnetic fields are both obtained from the vector potential.
In the space and time harmonic form used in this chapter, this works out to:

−
∮

S

ˆ̄S′
6k̈+1,6n̈+1 · da =

−πr′ls
µ0

[
6j(k̈ − n̈)ωs

]
{

3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}2

·
(

ˆ̄A
′(4)

z,6k̈+1,6n̈+1
(r′)

) [
d

dr′

(
ˆ̄A
′(4)

z,6k̈+1,6n̈+1
(r′)

)]∗
, (6.64)

where the peak value of the vector potential ˆ̄A′
z,6k̈+1,6n̈+1

(r′) is given by the case

where k̈ 6= n̈ in (6.41b), since the case for k̈ = n̈ works out to zero. The location of the
integration surface S is chosen in the centre of the air gap: r = rag.

From Chapter 4 and Appendix B, the only possible interpretation of the power
terms in (6.64) is the dissipation in the shielding cylinder. The average power cross-
ing the air gap from the stator to the rotor, 〈P′

δ,sc,6k̈+1,6n̈+1
〉 = 〈P′

source,sc,6k̈+1,6n̈+1
〉, can

therefore be written as:

〈P′
δ,sc,6k̈+1,6n̈+1

〉 = 〈P′
diss,sc,6k̈+1,6n̈+1

〉 = Re




−
∮

S

ˆ̄S′
6k̈+1,6n̈+1 · da




 , (6.65)

where 〈P′
diss,sc,6k̈+1,6n̈+1

〉 is the k-th space n-th time harmonic of the average power

dissipated in the shielding cylinder.

6.8.3 Results for typical current waveforms

Figure 6.5 shows an example of typical current waveforms of a CSI connected to the
machine. Realistic waveforms for a small firing angle of α = 1◦ and a larger one of
α = 42◦ are shown.1 In these two waveforms, the line inductance is nonzero and a
boost converter pre-stage is connected between the DC bus and the CSI. The latter

1For α = 42◦, the power level is 134 kW at a DC-link current of 400 A. The current waveform for α = 1◦

has been given the same DC-link current level of 400 A; for this equal current the power level at α = 1◦ is
164 kW.
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Figure 6.5: Three current waveforms for calculating the induced eddy-current loss in

the shielding cylinder: (a) as a function of time; and (b) spectral content

causes the ripple in the current waveforms. Also shown is a waveform of an ideal
diode bridge rectifier with zero line inductance. This unrealistic waveform repre-
sents the worst case in terms of time harmonic content. The waveforms of Figure 6.5
correspond to a flywheel rotational speed of 15 000 rpm.

The eddy-current loss induced in the shielding cylinder for the three waveforms
of Figure 6.5, calculated by (6.64) and (6.65), are listed in Table 6.3.

As in the case of inductance (see Table 6.2), the space harmonic plays a less
important role in the shielding cylinder loss than the time harmonic. The total loss
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k \ n 1 5 7 11 13

Ideal bridge rectifier

1 0 61.48 31.37 13.79 9.871

5 4.319 0 0.0964 0.0357 0.0313

7 0.2599 0.0115 0 0.0027 0.0015

11 0.0327 0.0011 0.0007 0 0.0002

13 0.0567 0.0026 0.0009 0.0006 0

CSI: α = 42◦

1 0 55.13 20.29 2.861 7.046

5 4.335 0 0.0624 0.0074 0.0223

7 0.2609 0.0103 0 0.0006 0.0011

11 0.0328 0.0010 0.0005 0 0.0002

13 0.0569 0.0023 0.0006 0.0001 0

CSI: α = 1◦

1 0 53.53 17.81 3.728 2.304

5 6.187 0 0.0547 0.0097 0.0073

7 0.3723 0.0100 0 0.0007 0.0004

11 0.0468 0.0009 0.0004 0 0.0001

13 0.0812 0.0022 0.0006 0.0002 0

Table 6.3: The k-th and n-th component of the induced eddy-current loss [W] in the

shielding cylinder for the waveforms of Figure 6.5.

in the case of the ideal rectifier is 121.4 W, while for the CSI with α = 42◦ and α = 1◦,
it is 90.13 W and 84.15 W, respectively.

This section and Section 6.6 discussed two derived quantities from the stator
field: inductance and induced loss in the shielding cylinder. The inductance was
derived in stator coordinates and the induced loss in the shielding cylinder in rotor
coordinates. They were both derived for a rotor that is free to turn. The next section
takes a look at the locked-rotor situation. The locked-rotor tests are widely used to
determine machine parameters as a function of frequency. To compare the analyti-
cally calculated results with the locked-rotor tests, the solutions for the inductance
and the Poynting vector have to be transformed to the case in standstill.

6.9 The locked-rotor machine impedance

6.9.1 Introduction

In Section 6.6, the stator main-field inductance was calculated directly from the vec-
tor potential in the winding region. It was shown in Table 6.2 that the machine
inductance decreases at high frequencies, where the shielding cylinder shields the
magnets and rotor iron.
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The magnetic field also influences the resistance measured at the stator termi-
nals, causing an increase with frequency. This resistance consists of two parts: the
stator winding resistance, and the reflected resistance of the rotor due to the mag-
netic field effects. As shown in the next section, the resistance of the Litz wire used
in the stator winding is constant up to very high frequencies since the strands are
very thin (0.1 mm).

After showing that the stator Litz wire resistance may be neglected when de-
termining the frequency-dependent resistance effects, the locked-rotor impedance is
developed. For this, the discrete time harmonics are converted into a continuous
function of frequency in Section 6.9.3.

6.9.2 Stator Litz wire resistance

The stator winding layout was shown in Figure 3.8. There is one conductor per
slot per layer, and these conductors are made up of Litz wire cables, as described
in Chapter 5, where the induced loss in the Litz wire winding was calculated. The
diameter of one Litz strand is chosen as 0.1 mm.

The skin depth is given by equation (3.6) and repeated here:

δ =

√
2

ωσµ
=

√
1

π f σµ
. (6.66)

For the fundamental frequency of the stator, fs = 1000 Hz, the skin depth of copper
is:

δCu,1kHz =

√
1

1000π · 5.8 × 107 · 4π × 10−7
= 2.09 mm. (6.67)

At first, 0.1 mm strand-diameter Litz wire for the stator winding’s conductors seems
too small considering the large skin depth of (6.67). This apparently too small a
choice can also be seen from the AC resistance of one strand.

To calculate the AC resistance of a single isolated conductor, one can derive a
differential equation from Maxwell’s equations for the current density in the con-
ductor as a function of the radius [Lam66]. This differential equation is a modified
Bessel equation, similar to (6.38), but with much simpler boundary conditions. From
the solution to this equation, i.e., the current density, the wire’s impedance can be
obtained. The expression for this impedance is:

Zstrand( f ) = Rstrand + j2π f Lstrand =
j

3
2 kτ

2πr0σ

I0

(
j

3
2 kτr0

)

I1

(
j

3
2 kτr0

) [Ω/m], (6.68)

where r0 is the outer radius of the strand conductor; I0 and I1 are modified Bessel
functions2 of the first kind of order 0 and 1, respectively; and kτ is a constant similar
to (6.31), and defined by:

kτ ≡
√

2π f σµ. (6.69)

2See Appendix C for a brief overview of Bessel functions.
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The resistance Rstrand can be extracted from (6.68) by taking its real part by a com-
puter package capable of working with (modified) Bessel functions with complex
arguments, like MATLAB R© 5. Another way is to rewrite (6.68) in terms of the Kelvin
functions to obtain a real function for the resistance [Lam66], [McL55].

Figure 6.6 shows the AC resistance, calculated with (6.68) and normalized to the
DC resistance, of a single strand of Litz wire as a function of frequency. Figure 6.6
shows that the choice of 0.1 mm results in a Litz wire resistance that is constant and
equal to the DC resistance up to a few hundred kHz. The main frequency-dependent
part of the stator resistance is therefore the real part of the reflected impedance of the
rotor.

The skin depth and AC resistance arguments given above do not motivate the
choice of the strand diameter of 0.1 mm. The choice has not been based on these
arguments, however, but rather on the induced loss in the strands due to the rotating
field of the permanent magnets. This will be discussed in Chapter 7, Section 7.6.
Particularly, equation (7.53) shows that this induced loss is a function of the strand
diameter squared, which explains the choice of 0.1 mm better.

6.9.3 Inductance

The stator self-inductance of phase a, given by (6.57), may be transformed for the
locked-rotor solution into a continuous function of frequency by choosing the base
frequency fs very small in the solution so that (6.34), repeated here:

τ̄2
6n̈+1 = jµσ(6n̈ + 1)ωs, (6.70)

becomes:
τ̄2( f ) = jµσ2π f . (6.71)

This transforms the k-th space harmonic of the inductance into:

Lssa,6k̈+1( f ) = πls

{
3

2

n̂2
s,6k̈+1

hwrwc

}
Â

(2)

z,6k̈+1
(rwc, f ). (6.72)

6.9.4 Reflected resistance of the rotor

In Appendix B, an expression for the locked rotor machine resistance is derived from
Poynting’s Theorem (equation (B.52)). There, 〈Psource〉 was introduced as the average
power delivered to the rotor from the stator. Since the rotor is locked, rotor and stator
coordinates are the same. The only power component of 〈Psource〉 is the power dissi-
pated in the shielding cylinder, i.e., the eddy-current loss 〈Pdiss,sc〉 (see Section 6.8.2
and Appendix B for more information). Its k-th space harmonic may be written from
(6.65) as:

〈Pdiss,sc,6k̈+1( f )〉 = −Re






∮

S

ˆ̄S6k̈+1( f ) · da




 , (6.73)
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Figure 6.6: Rac of a single Litz wire strand as a function of frequency, normalized with

respect to Rdc, calculated from (6.68); strand diameters range from 0.1 mm

to 1.0 mm.

which is, from (6.64):

〈Pdiss,sc,6k̈+1( f )〉 = Re

{
πrls
µ0

(
j2π f

)
{

3

2

n̂s,6k̈+1 îs(t)

hwrwc

}2

·
(

ˆ̄A
(4)

z,6k̈+1
(rag, f )

) [
d

dr

(
ˆ̄A
(4)

z,6k̈+1
(rag, f )

)]∗}
.

(6.74)

An equivalent resistance may be defined for the power dissipation of (6.74), as
shown in Appendix B, equation (B.52). From equation (B.52), the equivalent resis-
tance is twice the power dissipation divided by an equivalent peak current squared.
The equivalent per-phase resistance is one third of this:

Rs,1φ,6k̈+1( f ) =
2

3

〈Pdiss,sc,6k̈+1( f )〉
| ˆ̄i( f )|2

, (6.75)

where ˆ̄i( f ) is an equivalent peak current, conveniently chosen as 1 A.
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6.10 Experimental verification of the locked rotor ma-

chine impedance

6.10.1 Introduction

The inductance of (6.72) does not contain the end-winding leakage inductance, as
already mentioned. To obtain a proper comparison, this inductance has to be added
to Lssa( f ) (the inductance Lssa( f ) is the sum of the space harmonics of Lssa,6k̈+1( f )).
From the measurements, the per-phase end-winding leakage inductance is: Lsσa =

5.95 µH.3

Similarly, the resistance Rs,1φ,6k̈+1( f ) of (6.75) does not contain the DC resistance

Rdc. It was determined experimentally as: Rdc = 2.566 mΩ per phase (at room
temperature).4

The method used to measure the machine impedance is described in the next
section, whereafter the results are compared with the analytical predictions.

6.10.2 The controlled current-injection (CCI) method

To measure the locked-rotor machine impedance, current is injected into the stator
winding from a PWM converter. The voltage waveform applied to the machine ter-
minals only contains certain harmonics (the fundamental switching frequency plus
its harmonic components), but the experiment can be performed at several appro-
priately chosen frequencies. Figure 6.7 shows the circuit diagram for this method.

For low frequencies, a square wave current was modulated by the converter,
while at high frequencies (higher than 500 Hz), the current ripple was used directly.
Thus, for frequencies below 500 Hz, the fundamental and 3rd, 5th, 7th, etc. harmonic
components were present in the current waveform and for frequencies higher than
500 Hz, even harmonics were also present. The converter is simply shown as a block
in Figure 6.7, although it included a series inductor for frequencies below 500 Hz
and a series inductor and capacitor for frequencies above 500 Hz. The current levels
varied from a 50 A peak value at low frequencies (square wave) to a peak value of
4 A (triangular waveform) at high frequencies.

As shown in Figure 6.7, the line-line voltage usbc(t) and the line current isb(t)
were measured and sampled. These signals were measured and recorded onto disk
for the different switching frequencies, whereafter the FFT algorithm was used to
transform the signals into the frequency domain: Ūsbc( f ) and Īsb( f ). The machine
impedance at frequency f is then given by:

Z̄( f ) =
Ūsbc( f )

Īsb( f )
, (6.76)

3The per-phase end-winding leakage inductance was not directly measured. It was taken to be that
part of the inductance that the analytical model did not account for. More precisely, it was taken to be the
level shift in the inductance vs frequency graph between the measured and calculated values.

4The DC resistance was also calculated; it agrees with the measured value.
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Figure 6.7: Circuit diagram for measuring machine impedance with controlled current

injection.

and from Figure 6.7 the impedance is also equal to:

Z̄( f ) = 2Rx( f ) + 4jπ f Lx( f ). (6.77)

Therefore, the resistance and inductance can be calculated from (6.77) as:

Rx( f ) =
1

2
Re(Z̄x( f )), (6.78)

and

Lx( f ) =
1

4π f
Im(Z̄x( f )), (6.79)

respectively.

6.10.3 Results

Figure 6.8 shows a comparison of results of the analytically calculated and the mea-
sured per-phase machine impedance. Figure 6.8(a) shows the DC resistance, the
analytically predicted frequency-dependent per-phase resistance of (6.75) and the
measured resistance of (6.78). Figure 6.8(b) shows the end-winding leakage induc-
tance, the analytically predicted frequency-dependent per-phase inductance of (6.72)
and the measured inductance of (6.79).

In Figure 6.8(a), the analytically calculated resistance agrees well with the mea-
sured data up to about 300 Hz. The greatest differences in the measured and calcu-
lated resistance occur in the points of transition. The rise in the calculated resistance
above about 20 kHz is due to the skin effect in the shielding cylinder. However, at
these high frequencies, the loss due to eddy currents in the stator iron have already
completely dominated the reflected resistance. The losses in the stator iron start
playing a significant role above about 300 Hz. Since stator iron loss is a combined
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field effect, it will be discussed in Chapter 7, where the difference between the two
graphs of Figure 6.8(a) at high frequencies will again be investigated.

In Figure 6.8(b), the analytically predicted inductance agrees well with the mea-
sured result over the whole frequency range, except above approximately 20 kHz.
As in the case of the stator resistance, the greatest differences in the measured and
calculated resistance occur at the points of transition. These differences are larger in
the case of the inductance, however. Most likely this is due to frequency-dependent
effects in the end windings, which are not modelled since they occur in the third
dimension.

6.11 The stator voltage equation

The stator voltage equation was introduced in Chapter 5, in equation (5.31). At
this stage, after the discussions on total stator resistance, no-load voltage and sta-
tor main-field inductance are completed, this voltage equation can be rewritten as:

~us(t) = Rdc
~is(t) +

∞

∑
k̈=−∞

∞

∑
n̈=−∞

Rs,6k̈+1,6n̈+1
~is,6n̈+1(t) +~epa(t)

+
∞

∑
k̈=−∞

∞

∑
n̈=−∞

Lss,6k̈+1,6n̈+1

d

dt
~is,6n̈+1(t) + Lsσ

d~is(t)

dt
, (6.80)

where the resistance Rs,6k̈+1,6n̈+1 is obtained similarly to (6.75).
Equation (6.80) inherently contains the effect of the eddy currents in the shield-

ing cylinder, since this effect is included in the magnetic field. Therefore, there is
no need to define a winding or a voltage equation for the shielding cylinder. There
is also no voltage equation for the field winding because the excitation is achieved
with permanent magnets. Therefore, although it is short, equation (6.80) is the only
voltage equation needed and provides a complete description of the machine.

6.12 Summary and conclusions

6.12.1 Summary

This chapter focused on the magnetic field due to the stator currents, including the
effect on this field of the eddy currents in the shielding cylinder. Section 6.2 started
the chapter with a literature review of work done by others relevant to the two main
contributions of this chapter: (i) the stator winding excitation (air gap winding);
and (ii) the influence of the eddy-current reaction field on the field due to the stator
currents.

The field due to the air gap winding currents was described in Sections 6.3 (de-
velopment of the stator current density), 6.4 (the magnetic field) and 6.5 (results).
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For a free rotor, the quantities derived from the magnetic field were the stator
main-field inductance (Section 6.6), and the induced eddy-current loss in the shield-
ing cylinder (Section 6.8). The latter was illustrated with three stator current wave-
forms. Section 6.7 mentioned the end-winding leakage inductance, but it was not
calculated, since it is not included in the 2D-model. It is measured in Section 6.10,
however.

For the locked-rotor tests, the locked-rotor machine impedance was derived in
Section 6.9. Section 6.10 presented and discussed an experimental verification of the
locked-rotor machine impedance, while Section 6.11 listed the stator voltage equa-
tion.

6.12.2 Conclusions

Some of the important conclusions reached in this chapter are:

• Double-sided and single-sided Fourier series are a good way to describe a pe-
riodic waveform where the triplens need to be separated from the other har-
monic components.

• The solution of the vector potential in the shielding cylinder enforces two cases:
one for k 6= n and one for k = n. The solution in the winding also requires two
cases: one for kp 6= 2 and the other for kp = 2. This causes four overall cases
for which the entire system of PDEs in all six layers had to be solved.

• The shielding cylinder already shields completely at the 5th time harmonic
component (5 kHz). In fact, the transition from no shielding to complete shield-
ing takes place between approximately 20 Hz and 200 Hz for the EµFER geo-
metry.

• The Litz wire winding of the stator has an essentially constant resistance up to
approximately 100 kHz. Therefore, all frequency-dependent resistance effects
originate in the rotor, with the exception of the induced iron loss in the stator
yoke. This will be investigated in Chapter 7 since it is a combined field effect.

• The Theorem of Poynting provides a convenient and powerful way of calcu-
lating the induced eddy-current loss in the shielding cylinder.

• Experimental verification validates the analytical model derived in this the-
sis. Both the experimental locked-rotor resistance and inductance are in good
agreement with the analytically predicted results. (The calculated locked-rotor
resistance does not agree at high frequencies; this will be reexamined in Chap-
ter 7.)

• The machine needs only one voltage equation to completely describe it since
the effects of the shielding cylinder are already included in the magnetic field.



CHAPTER 7

The combined field and derived quantities

7.1 Introduction

Chapters 5 and 6 described the magnetic field due to the permanent magnets and
the stator currents. The first assumption made in Chapter 4 is that of linearity of
the magnetic vector potential. This means that the field of Chapter 5 may be alge-
braically added to the field of Chapter 6: Atotal = Amagnets + Astator currents.

This chapter focuses on this combined field.
Section 7.2 shows the details of combining the two fields into one, whereafter

Section 7.3 starts the discussion of quantities derived from this field by looking at
electromagnetic torque. Both the Poynting vector method and the Lorentz force
method will be used to obtain the torque.

Electrical machines are designed to convert electrical power into mechanical
power and vice versa. The electromagnetic torque of Section 7.3 is the way in which
useful conversion takes place. However, some of the electromagnetic power in-
evitably also goes to waste in the form of heat. These losses are induced both in
the stator and in the rotor.

The rotor loss consists only of the eddy-current loss in the shielding cylinder
and is only a function of the stator current field. It was therefore discussed as a
derived field quantity in Chapter 6. (Had stator slots been present, the permanent
magnets in combination with the stator teeth would have caused a pulsating field
in the shielding cylinder and thus extra loss. The machine under discussion in this
thesis does not have slots however, and therefore this effect does not occur.)

The stator losses, on the other hand, are a function of both the stator current
and the permanent-magnet fields, i.e., the combined field. The way in which the
fields can be combined is not the same for all materials, however. In the stator, two
electromagnetically active materials are present: copper (in the winding) and iron
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(in the stator yoke). Assumption 1 of Chapter 4 is actually only valid in magnetically
linear materials, and to find Atotal in Section 7.2, this has indeed been assumed. In
the determination of stator losses, however, this assumption has to be revised. In
iron close to saturation, the B and H fields are not linearly related anymore and a
mere sum of the two potentials Amagnets and Astator currents is no longer valid.

However, one may neglect the stator current field for the following two reasons:

• Field magnitude. The magnitude of the stator field is much lower than that of
the rotor (approximately an order of magnitude).

• Low armature reaction. The reason for a low armature reaction comes from the
fact that the machine has a very small inductance. This causes the phase angle
between the rotor and stator fields to be small; the rotor field is therefore not
heavily influenced by the stator field.

In Section 7.4, therefore, only the field due to the permanent magnets is considered
when determining the induced stator iron loss. Section 7.5 revisits the frequency-
dependent stator resistance by including the effect of the stator iron losses on this
frequency-dependent resistance.

The stator current field can also be neglected when determining the stator cop-
per loss. Hence for the induced eddy current loss in the stator winding, discussed in
Section 7.6, the field due to the stator currents is also neglected.

Section 7.7 summarizes and concludes the chapter.

7.2 The combined field

7.2.1 Introduction

This section is devoted to finding the combined field. We recall that the magnetic
vector potential in the air gap due to the permanent magnets (region 2 in Chapter 5)
was given by:

• for the radial array: equation (5.15);

• for the discrete Halbach array with two segments per pole: equation (5.23); and

• for the ideal Halbach array: equation (5.27).

These expressions were written as sin(·) functions, while in Chapter 6, the vector
potential due to the stator currents was written as a complex exponential function
ej(·). The vector potential due to the stator currents (region 3 in Chapter 6) had two
solutions:

• in rotor coordinates: equation (6.48), where the boundary condition constants of
the solution for the synchronously rotating rotor are used; and
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• in stator coordinates: equation (6.48), where the term e−j
[
(6k̈+1)pφ+6(k̈−n̈)ωst

]
is

replaced with e−j
[
(6k̈+1)pϕ−(6n̈+1)ωst

]
and the boundary condition constants of

the locked-rotor solution are used.

The next subsection discusses the details of adding the two fields together.

7.2.2 Addition of the vector potentials

Firstly, from now on we will indicate the field due to the magnets generically by the
subscript m, which can be one of rad, dh2 or ih. The field due to the stator currents is
indicated by the subscript s.

The second step is to convert the trigonometric function sin(·) used for the field
due to the magnets to the complex exponential function ej(·). To do this, we make
use of the Euler formula:

ejβ ≡ cos β + j sin β, (7.1)

which means that the k-th space harmonic of the real-valued vector potential of
Chapter 5, equation (5.8), can be obtained from the complex-valued version of this
chapter, equation (7.3), by:

sin β = Re

{
e

j
(

β−π
2

)}
, (7.2)

for the space harmonics k = 1, 5, 7, 11, · · ·
Thirdly, the space harmonics of the field due to the magnets k are converted to

the form k = 6k̈ + 1 of (3.14). The consequence of this is that the triplen space har-
monics of the permanent-magnet field are ignored. It may be seen both from the
Poynting vector and Lorentz force methods that the product of a field with triplen
harmonics with a field with zero triplens results in a field with zero triplen harmon-
ics. Thus the triplen harmonics of the permanent-magnet field can be removed right
from the start.

7.2.3 Rotor coordinates

The field due to the permanent magnets was already given in rotor coordinates in
(5.15), (5.23) and (5.27) and therefore the k-th space harmonic of the magnetic vector
potential due to the magnets is from (3.14) and (7.2):

Ā
(2)

z,m,6k̈+1
(r, φ) = ˆ̄A

(2)

z,m,6k̈+1
(r) e−j

[
(6k̈+1)pφ−π

2

]
, (7.3)

in rotor coordinates in complex exponential form. The term ˆ̄A
(2)

z,m,6k̈+1
(r) in (7.3) (the

peak value or r-part of the product solution) is given by (5.15b), (5.23b) and (5.27b).
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The k-th space and n-th time harmonic component of the vector potential due to
the stator currents in the air gap is given by (6.48):

Ā
(3)

z,s,6k̈+1,6n̈+1
(r, φ, t) = ˆ̄A

(3)

z,s,6k̈+1,6n̈+1
(r)

{
3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}
e−j

[
(6k̈+1)pφ+6(k̈−n̈)ωst+pθ0

]
.

(7.4)
In (6.48), the initial rotor position θ0 was set to zero, but in this chapter it is not.

The sum of equations (7.3) and (7.4) is the total vector potential in the air gap:

Ā
(3)

z,tot,6k̈+1,6n̈+1
(r, φ, t) = Ā

(2)

z,m,6k̈+1
(r, φ) + Ā

(3)

z,s,6k̈+1,6n̈+1
(r, φ, t), (7.5)

where the region numbering of the total field has been chosen as the region number-
ing of the stator field. (See Table 6.1).

7.2.4 Stator coordinates

The k-th space harmonic of the magnetic vector potential due to the magnets is in
stator coordinates:

Ā
(2)

z,m,6k̈+1
(r, ϕ, t) = ˆ̄A

(2)

z,m,6k̈+1
(r) e−j

[
(6k̈+1)pϕ−(6k̈+1)ωst−pθ0−π

2

]
, (7.6)

from equations (7.3) and (6.16).
The stator coordinate version of equation (7.4) is from (6.16):

Ā
(3)

z,s,6k̈+1,6n̈+1
(r, ϕ, t) = ˆ̄A

(3)

z,s,6k̈+1,6n̈+1
(r)

{
3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}
e−j

[
(6k̈+1)pϕ−(6n̈+1)ωst

]
.

(7.7)
The k-th space and n-th time harmonic of the total vector potential in stator

coordinates is given by the sum of (7.6) and (7.7):

Ā
(3)

z,tot,6k̈+1,6n̈+1
(r, ϕ, t) = Ā

(2)

z,m,6k̈+1
(r, ϕ) + Ā

(3)

z,s,6k̈+1,6n̈+1
(r, ϕ, t). (7.8)

7.3 Electromagnetic torque

7.3.1 Introduction

In this section, we start off the discussion on the quantities derived from the com-
bined field with the electromagnetic torque. Two methods are used to calculate the
electromagnetic torque developed by the machine: the Poynting vector method and
the Lorentz force method. The Poynting vector method is preceded by a literature
review of the use of the Poynting vector in electrical machines.
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7.3.2 Literature review: Use of the Poynting vector in electrical ma-
chines

The Poynting vector cannot only be used to find the loss induced in the shielding
cylinder, as in in [Den97], [Den98], [Abu99], [Zhu01b] and Chapter 6, but also to find
the complete air gap power and consequently the electromagnetic torque.

Slepian [Sle19], [Sle42] first introduced the use of the Poynting vector in elec-
trical machines. The aim of his work was to develop a tool to visualize the energy
flow in the air gap. Darrieus [Dar36], Dahlgren [Dah50] and Harrison [Har66] subse-
quently also demonstrated the usefulness of the Poynting vector in machines. These
authors treated the subject in a fairly general way.

Applied to specific machine types, Hawthorne developed expressions for DC
and synchronous machines [Haw53], [Haw54]. Induction machines were investi-
gated by Alger and Oney [Alg53], [Alg54], Poloujadoff and Perret [Pol71] and Cray
[Cra84]. Palit unified the theory into a model that is valid for all machine types in
[Pal80a], whereafter he applied the general theory to six machine types [Pal80b]. His
work was extended in [Pal82].

In [Gut98], Gutt and Grüner use the Poynting vector to define the power den-
sity as a general utilization factor. Permanent-magnet synchronous machines were
treated explicitly in [Xia96] by Xiaojuan et al. The magnets were modelled by equiv-
alent surface current densities on the surfaces of the magnets, and three torque cal-
culation methods were investigated: (i) from the Maxwell stresses, (ii) the energy
method and (iii) the Poynting vector. In this section, two methods for computing
torque will be used and compared: the Poynting vector method and the Lorentz
force method.

7.3.3 The Poynting vector method

The Poynting vector method gives the total power crossing the air gap from the
stator to the rotor. Equation (4.41) was used in Chapter 6 to obtain the induced
eddy current loss in the shielding cylinder. In this chapter, the interest is in all the
power crossing the air gap, including the electromagnetic torque. Therefore, the total
vector potential of (7.5) must be used. From equation (4.41) of Section 4.6, the surface

integral of the Poynting vector ˆ̄Stot of the total field is given by:

∮

S

ˆ̄Stot · da = −πrls Ēz,totH̄∗
φ,tot, (7.9)

where r is the radius of the integration surface S. To find the power crossing the
air gap, the integration radius is set equal to the radius at the centre of the air gap:
r ≡ rag = (rw + rci)/2.

In (7.9), Ēz,tot and H̄∗
φ,tot are the electric and magnetic fields due to the sum of

the vector potentials due to the permanent magnet array and the stator currents,
respectively. The ∗ in H̄∗

φ,tot denotes the complex conjugate of H̄φ,tot.
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The rest of this subsection revolves around equation (7.9). It will be worked out
in both rotor and stator coordinates to find the total power crossing the air gap from
the stator to the rotor.

7.3.4 Rotor coordinates

From (4.15) and (7.5) the k-th space and n-th time harmonic of the electric field in the
air gap is given by:1

Ē
(3)

z,tot,6k̈+1,6n̈+1
(r, φ, t) = − ∂

∂t
Ā

(3)

z,tot,6k̈+1,6n̈+1
(r, φ, t), (7.10)

which can be written from (7.3) and (7.4) as:

Ē
(3)

z,tot,6k̈+1,6n̈+1
(r, φ, t) = 0 +

[
−6j(k̈ − n̈)ωs

] ˆ̄A
(3)

z,s,6k̈+1,6n̈+1
(r)

{
3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}
e−j

[
(6k̈+1)pφ+6(k̈−n̈)ωst+pθ0

]
,

(7.11)

since the time derivative of the vector potential due to the permanent magnets, equa-
tion (7.3), is zero.

From (4.23) and (7.5) the k-th space and n-th time harmonic of the complex con-
jugate of the magnetic field in the air gap is given by:

H̄
(3)∗
φ,tot,6k̈+1,6n̈+1

(r, φ, t) = − 1

µ0

(
∂

∂r
Ā

(3)

z,tot,6k̈+1,6n̈+1
(r, φ, t)

)∗
, (7.12)

which becomes, from (7.3) and (7.4):

H̄
(3)∗
φ,tot,6k̈+1,6n̈+1

(r, φ, t) = − 1

µ0

[
d

dr
ˆ̄A
(2)

z,m,6k̈+1
(r)

]∗
e j

[
(6k̈+1)pφ

]

− 1

µ0

[
d

dr
ˆ̄A
(3)

z,s,6k̈+1,6n̈+1
(r)

]∗ {
3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}
e j

[
(6k̈+1)pφ+6(k̈−n̈)ωst+pθ0

]
. (7.13)

The total power crossing the air gap from the stator to the rotor is therefore

1Following the convention in this thesis, primes should be used in rotor coordinates. This is not done
in this chapter, however, to make the equations more readable. The context indicates whether quantities
are measured in rotor or stator coordinates. Where really needed, the superscripts rc and sc instead of
primes are used to indicate rotor and stator coordinates, respectively.



The combined field and derived quantities 143

obtained by substituting (7.11) and (7.13) into (7.9) and taking the real part:

Prc
δ,6k̈+1,6n̈+1

(t) = Re

{
−πragls

µ0

[
6j(k̈ − n̈)ωs

]
{

3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}

· ˆ̄A
(3)

z,s,6k̈+1,6n̈+1
(rag)

[
d

dr
ˆ̄A
(2)

z,m,6k̈+1
(r)

]∗

r=rag

e−j
[

6(k̈−n̈)ωst+pθ0

]}

+ Re

{
−πragls

µ0

[
6j(k̈ − n̈)ωs

]
{

3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}2

· ˆ̄A
(3)

z,s,6k̈+1,6n̈+1
(rag)

[
d

dr
ˆ̄A
(3)

z,s,6k̈+1,6n̈+1
(r)

]∗

r=rag

}
. (7.14)

It can clearly be seen that the two terms in (7.14) arise from different parts of the
total electric and magnetic fields. They may be represented as:

• Power term 1 ≡ Prc
1 (t) ∝ Ez,sHφ,m, i.e., the product of the electric field due to

the stator currents with the magnetic field due to the magnets; and

• Power term 2 ≡ Prc
2 ∝ Ez,sHφ,s, i.e., the product of the electric and magnetic

fields due to the stator currents.

Prc
1 (t) consists only of time-dependent components for nonequal space and time

harmonics. These terms have an average value of zero.
Prc

2 consists only of constant components for nonequal space and time harmon-
ics. In the next subsection it will become clear that these terms represent the power
dissipated in the shielding cylinder on the rotor.

The average value of the power crossing the air gap is therefore equal to Prc
2 :

〈Prc
δ,6k̈+1,6n̈+1

〉 = Prc
2,6k̈+1,6n̈+1

= −πraglsĒ
(3)

z,s,6k̈+1,6n̈+1
H̄

(3)∗
φ,s,6k̈+1,6n̈+1

. (7.15)

Table 7.1 lists the average value of the k-th space and n-th time harmonic com-
ponent of the power crossing the air gap in rotor coordinates calculated by equations
(7.14) and (7.15). This result was calculated for the waveform of the CSI with α = 42◦

of Figure 6.5 and a radial array. This power is the power dissipated in the shielding
cylinder, also calculated in Chapter 6.

One would expect constant power to be transferred from the stator to the rotor
when k̈ = n̈, but (7.14) shows that the total power crossing the air gap is zero for
equal space and time harmonics in rotor coordinates.

In stator coordinates, this expectation is fulfilled, however. The difference be-
tween the results in the two coordinate systems may be understood by noticing that
in rotor coordinates, the integration surface rotates synchronously with the stator
field for k̈ = n̈. In stator coordinates, the integration surface stands still and relative
movement effects are included in the power terms. The air gap power calculation in
stator coordinates is the focus of the next subsection.
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|k| \ |n| 1 5 7 11 13

1 0 55.13 20.29 2.861 7.046

5 4.335 0 0.0624 0.0074 0.0223

7 0.2609 0.0103 0 0.0006 0.0011

11 0.0328 0.0010 0.0005 0 0

13 0.0569 0.0023 0.0006 0 0

Table 7.1: The average value of the k-th and n-th component of the power crossing the

air gap [W] in rotor coordinates calculated by equations (7.14) and (7.15).

This result was calculated for the waveform of the CSI with α = 42◦ of Fig-

ure 6.5 and a radial array.

7.3.5 Stator coordinates

The total electric field in stator coordinates may be obtained from (7.6) and (7.7) as:

Ē
(3)

z,tot,6k̈+1,6n̈+1
(r, ϕ, t) =

−
[
j(6k̈ + 1)ωs

] ˆ̄A
(2)

z,m,6k̈+1
(r) e−j

[
(6k̈+1)pϕ−(6k̈+1)ωst−pθ0

]

−
[
j(6n̈ + 1)ωs

] ˆ̄A
(3)

z,s,6k̈+1,6n̈+1
(r)

{
3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}
e−j

[
(6k̈+1)pϕ−(6n̈+1)ωst

]
. (7.16)

Similarly, the total magnetic field in stator coordinates is:

H̄
(3)∗
ϕ,tot,6k̈+1,6n̈+1

(r, ϕ, t) = − 1

µ0

[
d

dr
ˆ̄A
(2)

z,m,6k̈+1
(r)

]∗
e j

[
(6k̈+1)pϕ−(6k̈+1)ωst−pθ0

]

− 1

µ0

[
d

dr
ˆ̄A
(3)

z,s,6k̈+1,6n̈+1
(r)

]∗ {
3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}
e j

[
(6k̈+1)pϕ−(6n̈+1)ωst

]
. (7.17)

As in (7.14) for rotor coordinates, different power terms may be identified when
substituting (7.16) and (7.17) into (7.9) and taking the real part. In a compact repre-
sentation, these four terms are:

• Psc
1 ∝ Ez,mHϕ,m;

• Psc
2 (t) ∝ Ez,mHϕ,s;

• Psc
3 (t) ∝ Ez,sHϕ,m; and

• Psc
4 ∝ Ez,sHϕ,s.
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When fully written out, these expressions are:

Psc
1,6k̈+1,6n̈+1

= Re

{
−πragls

µ0

[
j(6k̈ + 1)ωs

]

· ˆ̄A
(2)

z,m,6k̈+1
(rag)

[
d

dr
ˆ̄A
(2)

z,m,6k̈+1
(r)

]∗

r=rag

}
, (7.18)

Psc
2,6k̈+1,6n̈+1

(t) = Re

{
−πragls

µ0

[
j(6k̈ + 1)ωs

]
{

3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}

· ˆ̄A
(2)

z,m,6k̈+1
(rag)

[
d

dr
ˆ̄A
(3)

z,s,6k̈+1,6n̈+1
(r)

]∗

r=rag

e j
[

6(k̈−n̈)ωst+pθ0

]}
, (7.19)

Psc
3,6k̈+1,6n̈+1

(t) = Re

{
−πragls

µ0

[
j(6n̈ + 1)ωs

]
{

3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}

· ˆ̄A
(3)

z,s,6k̈+1,6n̈+1
(rag)

[
d

dr
ˆ̄A
(2)

z,m,6k̈+1
(r)

]∗

r=rag

e−j
[

6(k̈−n̈)ωst+pθ0

]}
, (7.20)

and

Psc
4,6k̈+1,6n̈+1

= Re

{
−πragls

µ0

[
j(6n̈ + 1)ωs

]
{

3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}2

· ˆ̄A
(3)

z,s,6k̈+1,6n̈+1
(rag)

[
d

dr
ˆ̄A
(3)

z,s,6k̈+1,6n̈+1
(r)

]∗

r=rag

}
. (7.21)

The k-th space and n-th time harmonic of the total power crossing the air gap is
then simply:

Psc
δ,6k̈+1,6n̈+1

(t) = Psc
1,6k̈+1,6n̈+1

+ Psc
2,6k̈+1,6n̈+1

(t) + Psc
3,6k̈+1,6n̈+1

(t) + Psc
4,6k̈+1,6n̈+1

. (7.22)

Power component 1 is always zero2: Psc
1,6k̈+1,6n̈+1

= 0, while the other three com-

ponents represent the sum of the mechanical power delivered to the rotor and the
power dissipated on the rotor. This may be written as:

Psc
δ,6k̈+1,6n̈+1

(t) = Psc
diss,6k̈+1,6n̈+1

+ Psc
mech,6k̈+1,6n̈+1

(t), (7.23)

2This is because there is no interaction between the E and H fields of the magnets. For the power terms
Psc

2,6k̈+1,6n̈+1
and Psc

3,6k̈+1,6n̈+1
, there is interaction between the rotor and stator fields. For the power com-

ponent due to only the stator field, Psc
4,6k̈+1,6n̈+1

, the interaction is due to the relative movement between

the fields, i.e. for some combinations of space and time harmonics, the field rotates clockwise at a certain
speed and for other combinations anticlockwise at another speed. For Psc

1,6k̈+1,6n̈+1
, this effect does not

occur since all space harmonic fields rotate in the same direction.
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where Pdiss,6k̈+1,6n̈+1 is the k-th space and n-th time harmonic of the power dissipated
and Pmech,6k̈+1,6n̈+1 the k-th space and n-th time harmonic of the mechanical power
delivered from the stator to the rotor.

As in the case of rotor coordinates, from the definition of the complex Poynting
vector in Appendix B, we are only interested in the average value3 of the air gap
power:

〈Psc
δ,6k̈+1,6n̈+1

〉 = Psc
diss,6k̈+1,6n̈+1

+ 〈Psc
mech,6k̈+1,6n̈+1

〉. (7.24)

The time-dependent components in (7.22) are Psc
2,6k̈+1,6n̈+1

(t) and Psc
3,6k̈+1,6n̈+1

(t) for

nonequal space and time harmonics. The average values of these two power compo-
nents are zero when k̈ 6= n̈, i.e., the only nonzero average values are for equal space
and time harmonics. These are the interaction terms between the stator and the ro-
tor with zero relative movement between the two and therefore they only consist of
mechanical power.

The Power term Psc
4,6k̈+1,6n̈+1

represents power delivered to the shielding cylin-

der from the stator winding, since it is only due to the electric and magnetic fields
of the stator current. It contains both mechanical and dissipation terms. This is
because, as in Psc

2,6k̈+1,6n̈+1
(t) and Psc

3,6k̈+1,6n̈+1
(t), relative movement between rotor

and stator fields is present, for when k̈ 6= n̈. The difference with Psc
2,6k̈+1,6n̈+1

(t) and

Psc
3,6k̈+1,6n̈+1

(t) is that the average values of the power for these relative-movement

terms are nonzero in the case of Psc
4,6k̈+1,6n̈+1

. To distinguish between the mechanical

and loss components of power term Psc
4,6k̈+1,6n̈+1

, the rotor slip must be introduced.

7.3.6 Psc
4 and the slip

The relationship between the two power components of Psc
4,6k̈+1,6n̈+1

can be found by

introducing the slip:4

s6k̈+1,6n̈+1 =
6(n̈ − k̈)

6n̈ + 1
. (7.25)

Table 7.2 lists the slip for up to the 13th space and time harmonic.
In terms of the slip, Psc

4,6k̈+1,6n̈+1
is rewritten as:

Psc
4,6k̈+1,6n̈+1

= Psc
diss,4,6k̈+1,6n̈+1

+ Psc
mech,4,6k̈+1,6n̈+1

= s6k̈+1,6n̈+1Psc
4,6k̈+1,6n̈+1

+ (1 − s6k̈+1,6n̈+1)Psc
4,6k̈+1,6n̈+1

.
(7.26)

Power term Psc
4,6k̈+1,6n̈+1

is zero for equal space and time harmonics, thus both its

dissipation and mechanical components are zero for k̈ = n̈.

3Since Pdiss,6k̈+1,6n̈+1 is constant, 〈Pdiss,6k̈+1,6n̈+1〉 = Pdiss,6k̈+1,6n̈+1.
4The validity of the usage of the slip may be found in any text that treats induction machines like

[Sle92]. The shielding cylinder and stator winding in combination act as an induction machine since there
are rotating fields originating from the stator that differ in rotational speed from the mechanical rotational
speed of the shielding cylinder.
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|k| \ |n| 1 5 7 11 13

s6k̈+1,6n̈+1

1 0 1.2 0.8571 1.091 0.9231

5 6 0 1.714 0.5455 1.385

7 −6 2.4 0 1.636 0.4615

11 12 −1.2 2.571 0 1.846

13 −12 3.6 −0.8571 2.182 0

1 − s6k̈+1,6n̈+1

1 1 −0.2 0.1429 −0.0909 0.0769

5 −5 1 −0.7143 0.4546 −0.3846

7 7 −1.4 1 −0.6364 0.5385

11 −11 2.2 −1.571 1 −0.8462

13 13 −2.6 1.857 −1.182 1

Table 7.2: The k-th and n-th component of the slip calculated by (7.25).

7.3.7 The average air gap power

Equation (7.24) is the average air gap power in stator coordinates. The dissipation
and mechanical components may be written by distinguishing between the equal
and nonequal space and time harmonics cases. The dissipation component is:

Psc
diss,6k̈+1,6n̈+1

=





0 if k̈ = n̈

s6k̈+1,6n̈+1Psc
4,6k̈+1,6n̈+1

if k̈ 6= n̈,
(7.27)

and the mechanical component is:

〈Psc
mech,6k̈+1,6n̈+1

〉 =





〈Psc

2,6k̈+1,6n̈+1
〉 + 〈Psc

3,6k̈+1,6n̈+1
〉 if k̈ = n̈

(1 − s6k̈+1,6n̈+1)Psc
4,6k̈+1,6n̈+1

if k̈ 6= n̈.
(7.28)

Table 7.3 lists the average mechanical power 〈Psc
2,6k̈+1,6n̈+1

〉 + 〈Psc
3,6k̈+1,6n̈+1

〉, the

power term Psc
4,6k̈+1,6n̈+1

, and its dissipation and mechanical components.

The following observations may be made from Tables 7.1 and 7.3:

• The higher harmonics of the average mechanical power due to stator-rotor in-
teraction are negligible in comparison with the fundamental (k = 1, n = 1)
component.

• The 5th space and 5th time harmonic of the average mechanical power due to
stator-rotor interaction is zero. This is a direct consequence of the 5th space
harmonic of the winding distribution being zero. However, the other com-
ponents are also very small, as mentioned above. This leads to the following
observation:
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|k| \ |n| 1 5 7 11 13

〈Psc
2,6k̈+1,6n̈+1

〉 + 〈Psc
3,6k̈+1,6n̈+1

〉
1 −1.766 × 105 0 0 0 0

5 0 0 0 0 0

7 0 0 32.72 0 0

11 0 0 0 −4.145 0

13 0 0 0 0 −4.425

Psc
4,6k̈+1,6n̈+1

1 0 45.95 23.68 2.622 7.633

5 0.7224 0 0.0364 0.0136 0.0161

7 −0.0435 0.0043 0 0.0003 0.0024

11 0.0027 −0.0009 0.0002 0 0

13 −0.0047 0.0006 −0.0007 0 0

s6k̈+1,6n̈+1Psc
4,6k̈+1,6n̈+1

1 0 55.13 20.29 2.861 7.046

5 4.335 0 0.0624 0.0074 0.0223

7 0.2609 0.0103 0 0.0006 0.0011

11 0.0328 0.0010 0.0005 0 0

13 0.0569 0.0023 0.0006 0 0

(1 − s6k̈+1,6n̈+1)Psc
4,6k̈+1,6n̈+1

1 0 −9.189 3.383 −0.2384 0.5872

5 −3.612 0 −0.0259 0.0062 −0.0062

7 −0.3044 −0.0060 0 −0.0002 0.0013

11 −0.0300 −0.0019 −0.0003 0 0

13 −0.0616 −0.0017 −0.0014 0 0

Table 7.3: The average value of the k-th and n-th component of the power crossing the

air gap [W] in stator coordinates. This result was calculated for the wave-

form of the CSI with α = 42◦ of Figure 6.5 and a radial array. The dissipation

and mechanical components of Psc
4,6k̈+1,6n̈+1

are also listed.

• The space harmonics play only a minor role in all the power terms.

• The average air gap power in rotor coordinates is equal to the dissipation part
of Psc

4,6k̈+1,6n̈+1
in stator coordinates. This may be written as:

Prc
2,6k̈+1,6n̈+1

= s6k̈+1,6n̈+1Psc
4,6k̈+1,6n̈+1

. (7.29)

This is the power dissipated in the shielding cylinder, also calculated in Chap-
ter 6. Equation (7.29) proves that the power dissipated in the shielding cylin-
der is equal in stator and rotor coordinates. We have, therefore, in the nota-
tion of Chapter 4 (where primes indicate rotor coordinates) just shown that
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〈P′
diss,sc〉 = 〈Pdiss,sc〉 where 〈P′

diss,sc〉 = Prc
2 and 〈Pdiss,sc〉 = sPsc

4 .

• The air gap power term Psc
4,6k̈+1,6n̈+1

is negative for the same combination of

space and time harmonics where the slip is negative. This means that when it
is multiplied by the slip, all the resulting terms are positive. This is the third
entry in Table 7.3, i.e., the dissipated power. Dissipated power should always
be positive; this is therefore a good way to check the calculated result.

7.3.8 The Lorentz force method

Another method to calculate the electromagnetic torque of the machine is by means
of the Lorentz force, as explained in Chapter 4. This method is ideal for the EµFER
machine since it calculates the force on a conductor in a magnetic field. An expres-
sion, (4.45), has been obtained for the torque:

Te = ls

rw∫

rso

2π∫

0

r2Br,mag(r, φ)Jz,s(r, ϕ) dr dϕ. (7.30)

in the complex notation used in this chapter, equation (7.30) becomes:

Te,6k̈+1,6n̈+1(t) = ls

rw∫

rso

2π∫

0

r2B
(2)

r,m,6k̈+1
(r, ϕ, t)Jz,s,6k̈+1,6n̈+1(ϕ, t) dr dϕ, (7.31)

where:
B

(2)

r,m,6k̈+1
(r, ϕ, t) = Re

{
B̄

(2)

r,m,6k̈+1
(r, ϕ, t)

}
, (7.32)

and:
Jz,s,6k̈+1,6n̈+1(ϕ, t) = Re

{
J̄z,s,6k̈+1,6n̈+1(ϕ, t)

}
. (7.33)

The k-th space harmonic of the flux density due to the magnets is in stator coordi-
nates, from (4.23):

B̄
(2)

r,m,6k̈+1
(r, ϕ, t) =

1

r

[
∂

∂φ
Ā

(2)

z,m,6k̈+1
(r, ϕ, t)

]
(7.34)

which becomes, from (7.6):

B̄
(2)

r,m,6k̈+1
(r, ϕ, t) =

−j(6k̈ + 1)p

r
ˆ̄A
(2)

z,m,6k̈+1
(r) e−j

[
(6k̈+1)pϕ−(6k̈+1)ωst−pθ0

]
. (7.35)

The three-phase stator currents result in a current density travelling wave, of which
the k-th space and n-th time harmonic component is written as:

J̄z,s,6k̈+1,6n̈+1(ϕ, t) =

{
3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}
e−j

[
(6k̈+1)pϕ−(6n̈+1)ωst

]
(7.36)
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from (6.15), but now written in complex exponential form. Equation (6.15) is the sum
over the space and time harmonics of the real part of (7.36). From (7.35) and (7.36),
the integral over ϕ in (7.31) can be written as:

2π∫

0

cos
[
(6k̈ + 1)pϕ − (6k̈ + 1)ωst − pθ0

]
cos

[
(6k̈ + 1)pϕ − (6n̈ + 1)ωst

]
dϕ. (7.37)

Performing the integral, one obtains:

π sin
[
6(k̈ − n̈)ωst − pθ0

]
. (7.38)

The second integral in (7.31) is
rw∫

rso

rÂ
(2)

z,m,6k̈+1
(r) dr. It can be worked out in gen-

eral when recalling from (5.6b) that the r-dependent part of the vector potential in
the air gap due to the permanent magnets5 can be written as:

Â
(2)

z,m,6k̈+1
(r) = C

(2)

6k̈+1

(
r

rmi

)−|6k̈+1|p
+ D

(2)

6k̈+1

(
r

rmi

)|6k̈+1|p
. (7.39)

Working out this integral results in the following general expression for the k-th
space and n-th time harmonic component of the electromagnetic torque on the stator:

Te,6k̈+1,6n̈+1(t) = −π(6k̈ + 1)pls sin
[
6(k̈ − n̈)ωst − pθ0

]
{

3

2

n̂s,6k̈+1 îs,6n̈+1

hwrwc

}

·






r
|6k̈+1|p
mi C

(2)

6k̈+1

2−|6k̈+1|p

(
r

2−|6k̈+1|p
w − r

2−|6k̈+1|p
so

)
+

r
−|6k̈+1|p
mi D

(2)

6k̈+1

2+|6k̈+1|p

(
r

2+|6k̈+1|p
w − r

2+|6k̈+1|p
so

)

if |6k̈ + 1|p 6= 2,

r2
miC

(2)

6k̈+1
ln

(
rw
rso

)
+

D
(2)

6k̈+1

r2
mi

(
r4

w − r4
so

)
if |6k̈ + 1|p = 2.

(7.40)

Equation (7.40) is valid for all three permanent-magnet arrays, as long as the appro-

priate boundary condition constants C
(2)

6k̈+1
and D

(2)

6k̈+1
are substituted into it. From

(7.40) it can be seen that the torque is constant when the space and time harmonics
are equal, and pulsating (a function of time) when k̈ 6= n̈. The effect of the rotor
offset angle θ0 (the angle between the magnetic axes of the permanent-magnet field
and the stator current field) is also seen in (7.40). When θ0 = 0, the torque is zero for
equal space and time harmonics and when θ0 = ±π

4 , the torque is maximum.
Table 7.4 lists the mechanical power (the electromagnetic torque times the ro-

tational velocity) for the same current waveform and permanent magnets as in Ta-
bles 7.1 and 7.3. It may be seen from Table 7.4 that the mechanical power for equal

5There is no bar in Â
(2)

z,m,6k̈+1
(r) because in Chapter 5, the boundary condition constants were all real.
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space and time harmonics is equal to the result of the Poynting vector method shown
in Table 7.3.

Each of the two methods provides unique information with respect to the other
method. The Poynting vector method results, in addition to mechanical power terms,
also in dissipation power terms that cannot be calculated by the Lorentz force method.
The Lorentz force method, on the other hand, provides information about the torque
ripple6 that the Poynting vector method, as used in this thesis, does not provide.

The torque ripple for the current waveform and magnets used for Tables 7.1, 7.3
and 7.4 is shown in Figure 7.1. The average value of the torque, 〈Te〉, is also shown.

|k| \ |n| 1 5 7 11 13

Te,6k̈+1,6n̈+1ωm

1 −1.766 × 105 33388 −20258 7299 −11457

5 0 0 0 0 0

7 285.3 −53.94 32.72 −11.79 18.51

11 100.3 −18.96 11.50 −4.145 6.51

13 −68.20 12.89 −7.824 2.819 −4.425

Table 7.4: The mechanical power obtained with the Lorentz force method from (7.40).

7.4 Induced losses in the stator iron

7.4.1 Introduction

Arguably the most difficult parameter to predict in any electrical machine is the iron
losses. This is mainly due to the following facts:

• iron is a magnetically nonlinear material;

• its magnetic properties may be anisotropic (important when rotating fields are
considered);

• manufacturing of laminations strongly influence the magnetic properties;

• temperature; and

• pressure or forces on the iron.

This list is only a partial list of the factors influencing the electromagnetic properties
of iron.

Although a lot of research has gone into the calculation of the iron losses in
(slotted) laminated cores of electrical machines, this will not be reviewed here. (For
a thorough literature review, see [Pol98].)

6It should be recalled that the time-varying terms of the Poynting vector have been neglected in this
thesis. This is documented in Appendix B.
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Figure 7.1: Electromagnetic torque Te(t) calculated by the Lorentz force method for the

same current waveform and magnets used for Tables 7.1, 7.3 and 7.4. The

torque ripple is clearly visible, and the average value of the torque, 〈Te〉, is

also shown.

To summarize, previous research can be divided into two categories:

• The classical approach. Here, the total iron loss is considered to be the sum of the
hysteresis loss and eddy current loss:

PFe = PFe,h + PFe,e, (7.41)

where the hysteresis loss is proportional to frequency and the the peak flux
density to the power of a number S:

PFe,h ∝ ωB̂S, (7.42)

where S is the Steinmetz constant. Its value depends on material properties
and its range is: 1.5 < S < 2.3.

The eddy current loss is proportional to the square of the flux density and
either proportional to the frequency squared or to the power of 3/2. The for-
mer case is for the case where the reaction field of the eddy currents does not
influence the applied field (i.e. at low frequencies), while in the latter (high-
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frequency) case it does:

PFe,e ∝

{
ω2B̂2 for small ω

ω
3
2 B̂2 for large ω

(7.43)

• The modern approach. In practice, machines exhibit losses that are not accounted
for by (7.43). Therefore, in addition to the the hysteresis and eddy current loss,
a third loss component is added: the anomalous loss. Thus, (7.41) becomes:

PFe = PFe,h + PFe,e + PFe,a. (7.44)

Many researchers have put serious efforts into finding analytical expressions
for PFe,a, with varying degrees of success. This is not under consideration in this
thesis, however. More attention is paid to the eddy current loss, since the largest
component in (7.44) at high frequencies is usually PFe,e. The next subsection takes
a look at calculating the eddy current loss in the stator iron. This is followed by a
discussion of a simple but effective method to estimate the total iron loss PFe from
material data provided by the manufacturer.

7.4.2 Eddy current loss

Appendix D documents the derivation of an equation for the calculation of the stator
eddy current loss. A function:

F(ξ) ≡ 3

ξ

sinh ξ − sin ξ

cosh ξ − cos ξ
, (7.45)

has been introduced for this purpose, where the variable ξ is the ratio of the lamina-
tion thickness to the skin depth, or:

ξ ≡ 2b

δ
. (7.46)

The stator iron volume:
Vs,Fe = π

(
r2

so − r2
si

)
ls, (7.47)

is needed for the calculation, given as:

Ps,Fe,e =
∞

∑
k=1,3,5,···

1

6
Vs,FeB̂2

sy,kσπ2 f 2
k (2b)2Fk(ξk). (7.48)

From equation (7.48), the eddy current loss in the stator yoke is a function of
the peak yoke flux density squared. The dependency on the lamination thickness
2b and the frequency is given by the function F(ξ) from equation (7.45). For low
frequencies, and thus small ξ, F(ξ) ≈ 1, the dependencies on lamination thickness
and frequency are:

Ps,Fe,e ∝ (2b)2 f 2. (7.49)
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For high frequencies, F(ξ) ≈ 3
ξ , the dependencies become:

Ps,Fe,e ∝ (2b) f
3
2 . (7.50)

The flux density in the winding is to be as high as possible since this increases
the power density of the machine. However, the flux density in the yoke should
be minimized because of the squared dependency of the stator loss on it. It can be
decreased by increasing the yoke thickness bsy ≡ (rso − rsi), i.e., by decreasing rsi,

the stator inner radius. By algebraic manipulation of the term Vs,FeB̂2
sy,k in (7.48):

Vs,FeB̂2
sy,k = π

(
r2

so − r2
si

)
ls

(
Φ̂sy,k

(rso − rsi)ls

)2

=
πΦ̂2

sy,k

ls

(rso − rsi)(rso + rsi)

(rso − rsi)2

=
πΦ̂2

sy,k

ls

bsy + 2rsi

bsy
, (7.51)

one sees that the loss is not a function of the yoke thickness squared, but (bsy +

2rsi)/bsy, which means that the reduction in loss gets asymptotically less as bsy in-
creases. Figure 7.2 shows the eddy current loss in the stator yoke of the EµFER
machine as a function of bsy.

Another possibility for reducing the eddy current loss is to make the laminations
thinner; the chosen thickness is a tradeoff between low losses and cost.

For the dimensions of the EµFER machine, Table 7.5 lists the eddy current loss
in the stator iron at 30 000 rpm. This is done as a function of the first 13 space
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Figure 7.2: The eddy current loss in the stator yoke of the EµFER machine as a function

of bsy.
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harmonics of the magnets for the three arrays discussed in this thesis. Table 7.5 also
lists the values of ξk, Fk(ξk), and 3/ξk, showing the validity of the assumption that
Fk(ξk) ≈ 3/ξk for high frequencies.

From Table 7.5 it can be seen that the loss of the discrete Halbach array is higher
than that of the other two arrays, except at the 7th and 9th space harmonics, where
the loss for the radial array is higher. Particularly, the 3rd harmonic is significantly
higher and the 5th is present, whereas it is zero in the radial array. This can also
be seen from Figure 5.15, where the spectral properties of the fields due to the three
arrays are shown.

The total loss listed in Table 7.5 is: 1452 W for the radial array, 1666 W for the
discrete Halbach array and 1107 W for the ideal Halbach array. These are for a con-
ductivity of iron of σ = 7 × 106 S/m and a constant permeability of 2500µ0 H/m.

k 1 3 5 7 9 11 13 Tot.

ξk 1.662 2.879 3.717 4.398 4.987 5.514 5.994 -

Fk(ξk) 0.9881 0.9070 0.7951 0.6926 0.6117 0.5503 0.5036 -

3/ξk 1.805 1.042 0.8071 0.6821 0.6016 0.5441 0.5005 -

Ps,Fe,e,rad,k 1247 192.4 0 8.311 3.681 0.6065 0.0380 1452

Ps,Fe,e,dh2,k 1288 350.8 23.59 0.4151 2.242 0.9447 0.1744 1666

Ps,Fe,e,ih,k 1107 0 0 0 0 0 0 1107

Table 7.5: The eddy current loss [W] in the stator iron calculated from (7.48) for the

first 13 space harmonics. The rotational speed for these calculations was

30 000 rpm.

7.4.3 Total stator iron losses

The previous subsection discussed the calculation of the stator eddy current loss due
to the rotating permanent magnets. If expressions for the other two loss components
can be found, this is useful. However, finding PFe,h and especially PFe,a for rotating
non-sinusoidal magnetic fields is a very complicated task.

A simple but effective way of estimating the total stator iron loss is to use the
following expression for the loss density [Pol98]:

kFe = cFekFe,0

(
ω

ω0

) 3
2

(
B̂

B̂0

)2

[W/kg] (7.52)

where cFe is a dimensionless constant obtained empirically, kFe,0 is the specific iron
loss at ω0 and B̂0 is obtained from the material manufacturer, ω and B̂ are the fre-
quency and flux density at which the loss is to be obtained, respectively.

In the EµFER machine, high-frequency laminated steel with a lamination thick-
ness of 0.2 mm is used. The specific iron loss is given as kFe,0 = 140 W/kg at
ω0 = 2π × 1000 rad/s and B̂0 = 1.5 T. When this is substituted into (7.52) and



156 Chapter 7

worked out for the total stator mass, the total iron loss is as that given in Table 7.6,
where the correction constant was set equal to cFe = 2.

The total loss is obtained by adding the losses at the different harmonic compo-
nents. For the three arrays the total loss is: radial: 2970 W; discrete Halbach: 3292 W;
and ideal Halbach: 2391 W.

k 1 3 5 7 9 11 13 Tot.

Ps,Fe,tot,rad,k 2694 261.4 0 9.681 4.282 0.7092 0.0447 2970

Ps,Fe,tot,dh2,k 2783 476.6 28.33 0.4835 2.608 1.105 0.2050 3292

Ps,Fe,tot,ih,k 2391 0 0 0 0 0 0 2391

Table 7.6: The total loss [W] in the stator iron calculated from (7.52) for the first 13 space

harmonics. The rotational speed for these calculations was 30 000 rpm.

7.5 The locked-rotor resistance revisited

In Chapter 6, the locked-rotor resistance was calculated as a function of frequency
from the Poynting vector in the air gap. Figure 6.8(a) showed the results of the an-
alytically calculated and the measured per-phase resistance. It was clear from Fig-
ure 6.8(a) that at high frequencies, the reflected rotor resistance was not the only
effect playing a role in the frequency-dependent resistance of the stator. It was also
mentioned that the difference at high frequencies is due to the stator iron losses.

Expression (7.52) of the previous section now gives us the opportunity to also
include the stator losses in the frequency-dependent stator resistance. One assump-
tion made for this purpose is that the resistive effect due the stator losses Rs,statorFe

may be linearly added to the resistive effect of the shielding cylinder on the rotor
Rs,sc and the DC resistance Rdc.

The first step is the translation of (7.52) into a resistance Rs,statorFe, which follows
a similar procedure as that for Rs,sc in Chapter 6. The same loss data are used from
the stator iron’s data sheets as were used in the previous section. Figure 7.3 shows
the result of this calculation. The experimentally obtained resistance is shown as
stars, and three other curves are shown: Rs,sc + Rdc, Rs,statorFe,tot and Rs,statorFe,tot +

Rs,sc + Rdc.
It can be seen that the last curve fits the measured data quite well, even at the

higher frequencies where the reflected rotor resistance (including the skin effect in
the shielding cylinder) Rs,sc of Chapter 6 was insufficient. The largest difference
between the calculated and measured resistance is in the bandwidth 3–20 kHz. In
this bandwidth, the measured result appears to be a function of frequency squared.

A resistance Rs,statorFe,e, due to the eddy current loss of (7.48) (and therefore a
function of frequency squared for lower frequencies), may be introduced to better
model the per-phase frequency-dependent resistance of the machine. However, the
critical frequency, where the eddy current loss changes from being proportional to f 2
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Figure 7.3: Comparison of results of the analytically calculated and the measured per-

phase resistance. The calculated result includes the stator losses.

to f 3/2, is at 4 kHz for the used 0.2 mm plates.7 This is therefore not a better method
and the total loss dependency of f 3/2 is used for the whole bandwidth. If a smaller
plate thickness is substituted into (7.48), the critical frequency moves to the right.
For example, for 2b = 0.1 mm, the critical frequency is 20 kHz. In this case it makes
sense to model the “centre” bandwidth of the resistance with the eddy current loss
model of (7.48), and at the higher frequencies, to model it with the total loss model
of (7.52).

7.6 Induced loss in the stator winding

This section takes a look at the eddy current loss induced in the stator Litz wire
winding due to the rotating field of the permanent magnets. The winding distribu-
tion was introduced in Figure 3.8 as a double-layer winding that is short pitched by
one slot. There is one conductor per slot per layer and each conductor consists of
two Litz-wire cables of 28 mm2 each, thus the copper area per conductor is 56 mm2.
Each cable is constructed of 3564 strands with a diameter of 0.1 mm, configured in a
6 × 6 × 3 × 33 configuration.

7Rs,statorFe,e is not plotted in Figure 7.3.
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When calculating the eddy current loss induced in such a Litz winding, one
cannot use standard techniques for pulsating fields since the field that the winding
is subject to is rotating. Furthermore, it is possible to account for skin and proximity
effects by looking at the field due to the current in every strand itself as well as at the
fields of the adjacent strands. These complete but complicated analyses have been
reported by, among others, [Fer92] and [Tou01].

For the stator winding of the EµFER machine, a simpler analysis would suffice
for two reasons:

1. The eddy current loss in the winding is approximately an order of magnitude
lower than that of the stator iron. Increasing the accuracy of the analysis by,
say, 20% would not result in a much more accurate estimation of the no-load
loss of the flywheel machine; and

2. the strand diameter chosen is very small, which reduces the eddy current loss
and strengthens the argument of reason 1.

Neglecting the field of the current in the strand itself, one may obtain the eddy
current density in a strand Jse,z directly by Faraday’s Law (4.7b) and Ohm’s Law
(4.8a). When integrating the square of Jse,z over the surface of the strand, dividing
by the conductivity σ, and multiplying by the total copper volume, one obtains the
expression [Car67]:

Ps,Cu,e =
1

8
ω2r2

strand σ
(

B̂2
r + B̂2

φ

)
ACuls, (7.53)

where B̂r and B̂φ are the peak values of the radial and tangential magnetic flux den-
sities into the strand, respectively, and ACu is the total copper area of the winding.
Equation (7.53) was originally derived in [Car67] and used in [Lov98], [Spo92] and
[Ark92] for air gap windings.

For the dimensions of the EµFER machine, Table 7.7 lists the eddy current loss
in the stator winding at 30 000 rpm. This is done as a function of the first 13 space
harmonics of the magnets for the three arrays discussed in this thesis.

The total loss of Table 7.7 is: 115.1 W for the radial array, 136.8 W for the discrete
Halbach array and 80.4 W for the ideal Halbach array. The above calculations were
done for a conductivity of copper of σ = 5 × 108 S/m.

The difference between the fundamental of the radial array and that of the ideal
Halbach array is smaller in the induced iron loss of Table 7.5 than in the induced
copper loss of Table 7.7. This is because the ratio of the tangential to radial flux
density in the winding region is higher for the radial array than for the ideal Halbach
array. Both the radial and tangential components play a role in the stator winding
eddy current loss calculation of (7.53), while in the iron eddy current loss of (D.18),
only the radial component of the flux density is considered. This is because flux
enters iron radially.



The combined field and derived quantities 159

k 1 3 5 7 9 11 13 Tot.

Ps,Cu,e,rad,k 90.53 18.78 0 2.574 2.296 0.7790 0.1012 115.1

Ps,Cu,e,dh2,k 95.72 34.28 3.539 0.1722 1.434 1.192 0.4418 136.8

Ps,Cu,e,ih,k 80.36 0 0 0 0 0 0 80.4

Table 7.7: The eddy current loss in the stator winding [W] of the EµFER machine for

the first 13 space harmonics. The rotational speed for these calculations was

30 000 rpm.

7.7 Summary and conclusions

This chapter focussed on the combined field of the machine: Atotal = Amagnets +

Astator currents.
Section 7.2 showed the details of combining the two fields into one, whereafter

Section 7.3 started the discussion of quantities derived from this field by looking at
electromagnetic torque. Both the Poynting vector and Lorentz force methods were
used to obtain the torque.

Section 7.4 looked at calculating the induced loss in the stator iron, whereafter
Section 7.5 made use of this by adding the resistive effect of the stator iron losses to
the frequency-dependent stator resistance. The discussion on induced losses contin-
ued in Section 7.6, this time in the stator winding.

Some of the important conclusions reached in this chapter are:

• The Poynting vector can be used to find the torque and the eddy current loss in-
duced in the shielding cylinder by calculating the air gap power. This method
delivers similar constant torque results to the Lorentz force method.

• The air gap power calculated by the Poynting vector method is different in
rotor and stator coordinates:

– In rotor coordinates, it only contains dissipation and no mechanical terms,
and no interaction between the stator and rotor fields is observable. This
is because the surface over which the Poynting vector is integrated rotates
with the rotor.

– In stator coordinates, the air gap power is made up of both a dissipation
and a mechanical power part. The interaction terms (where the rotor and
stator fields interact) result in only constant mechanical power for equal
space and time harmonics. The stator field term contains both mechanical
and dissipation terms and these may be separated by means of the rotor
slip.

– The dissipation part of the stator-field power is equal to the air gap power
calculated in rotor coordinates. This is the induced loss in the shielding
cylinder.
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• The Lorentz force method results not only in constant torque terms, but also
in the ripple torque. It provides no information on dissipated power, however,
since by definition it only calculates mechanical power.

• Although stator losses are a combined field effect, the role played by the field
due to the stator currents is so small that it may be neglected.

• A simple expression which states that iron loss is proportional to frequency to
the power of 3/2 can be used to find the total iron losses. It can also be used to
find the iron-loss part of the frequency-dependent stator resistance.

• To calculate the induced eddy current loss in copper, one has to take both the
radial and tangential components of the magnetic field into consideration. In
iron, due to its high permeability, the magnetic flux enters radially and only
the radial component is required.

• The induced eddy current loss in the stator winding is approximately 20 times
smaller than the total losses in the stator iron.



CHAPTER 8

Optimization

8.1 Introduction

In Chapter 3, an external-rotor permanent-magnet synchronous machine with a slot-
less stator was introduced for use in a flywheel energy storage system. An analytical
model was developed for the design and analysis of such a machine in Chapters 4–7.
Chapter 4 presented an overview of the method, while Chapters 5 and 6 discussed
the fields due to the permanent magnets and stator currents, respectively. The lat-
ter included the effect of the eddy currents in the shielding cylinder on the rotor on
the stator current field. Chapter 7 combined these two fields into one to study the
magnetic field in the loaded machine.

In the last three chapters, useful quantities were derived from the fields. They
were:

• Permanent magnet field (Chapter 5):

– No-load voltage;

• Stator current field (Chapter 6):

– Main-field inductance (including the locked-rotor machine inductance);

– Rotor loss (induced loss in the shielding cylinder);

• Combined field (Chapter 7):

– Electromagnetic torque;

– Stator losses (induced eddy current loss in the stator winding, and in-
duced losses in the stator iron);

– The locked-rotor machine resistance.

161
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These fields and derived quantities completely describe the machine.
Two of the advantages of an analytical approach mentioned in Chapter 4 were:

• lower computation time; and

• the analytical approach allows one greater insight into the problem.

The latter was motivated by R.L. Stoll in [Sto74], where he mentioned that relation-
ships between analysis inputs (for instance the machine geometry) and analysis out-
puts (e.g. torque and losses) may be established quicker with the analytical method
than with the finite element method.

Although Stoll wrote this in 1974, at a time when computers were very slow
and bulky compared with what is available today, his argument remains valid. Even
with the very fast desktop PCs of today, it still takes hours and for some complicated
geometries even several days to compute a field solution with derived quantities. To
do optimization with this method, the geometry (for example) has to be iteratively
changed and a recalculation has to be done for every new geometry. This takes the
total computation time from hours to days or from days to weeks.

In contrast, the computation time for field solutions with the analytical method
is in the order of minutes for geometries for which the finite element method requires
hours. Even if a complete field solution is done iteratively for varying geometries
like that described above for the finite element method, one still typically waits less
than an hour for the total computation to run. Furthermore, the real power of the
analytical method lies in the fact that one does not have to do a complete field solu-
tion for the parametric changes in geometry (or any other input variables), i.e., the
output quantities (torque and losses, for example) can be written directly in terms of
the input variables. This means to that the same optimization routine that required
between days and weeks with the finite element method now only takes seconds to
minutes to compute.

In this chapter, the power of the analytical model of Chapters 4—7 is exploited
due to the above two facts by performing several different optimizations on the ma-
chine. Section 8.2 starts the discussion by looking at possible optimization criteria
and independent variables. Three criteria are chosen: electromagnetic torque, total
stator losses and rotor loss in the shielding cylinder. The rest of the chapter focusses
on these three criteria. Section 8.3 discusses the influence of the permanent-magnet
array on these three quantities, whereafter Section 8.4 takes a look at the effect of the
winding distribution on them. Section 8.5 discusses machine geometry optimiza-
tion, by which is meant the variation of the different radii in the machine and the
influence thereof. Section 8.6 makes use of the results of Section 8.5 to find the op-
timum machine geometry for a fixed rotor outer diameter. The machine does not
operate in isolation, but is connected to a power electronics converter. The influence
of the choice of the converter on the induced rotor loss will be the brief focus of atten-
tion in Section 8.7. Generalizing the analytical machine model will be discussed in
Section 8.8, whereafter the chapter will be summarized and concluded in Section 8.9.
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8.2 Optimization criteria and input variables

8.2.1 Possible optimization criteria

Typically in optimization problems, some criteria are identified that need to be max-
imized or minimized, together with the input variables that these criteria depend
upon. In the electrical machine under consideration in this thesis, several optimiza-
tion criteria are possible:

1. high torque;

2. very low rotor losses;

3. low induced stator losses (with neglect of the stator current field this is the
no-load losses);

4. low stator conduction losses (i.e. losses due to the stator currents at load);

5. high total cycle efficiency (energy in and out);

6. compact (i.e. high power or torque density);

7. low manufacturing cost;

8. low material cost;

9. high reliability;

10. low maintenance;

11. safe for use in a public vehicle;

12. robust, etc.

8.2.2 Input variable possibilities

As above, several input variables may be identified:

1. number of pole pairs p;

2. permanent-magnet array;

3. magnet pole arc;

4. winding distribution;

5. machine geometry, i.e. radii, ratios of radii (thicknesses), axial length and air
gap length;

6. materials;

7. converter choice, etc.
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8.2.3 The chosen optimization criteria and input variables

It is a very large task to do all the optimizations of the criteria of Section 8.2.1 for all
the inputs of Section 8.2.2. For some of the criteria of Section 8.2.1, some numerical
value must first be defined, for example for safety. It is beyond the scope of this
thesis to find these or to optimize for all the optimization criteria in the list. Only
the most important ones are selected, and these are chosen as: #1, 2, and 3 for all the
input variables of Section 8.2.2.

8.3 Magnet array

8.3.1 Introduction

Several different permanent-magnet arrays can be used in a permanent-magnet syn-
chronous machine, as mentioned earlier in this thesis. Chapter 5 discussed three
examples of magnet arrays: the conventional radial array, the discrete Halbach array
with two segments per pole, and the ideal sinusoidal Halbach array. This section
starts with a discussion of types other than these three. Thereafter, the variation of
the magnet pole arcs of the radial and discrete Halbach arrays will be discussed in
conjunction with the variation of the number of pole pairs. Finally, the effects upon
the losses and torque by this pole arc variation will be examined. Only the variation
in the number of pole pairs and the polar arcs of the magnets will be discussed here.
The magnet thickness is left for Section 8.5.

8.3.2 The number of segments per pole

In Chapter 5, [Mar92], [Ata97] and [Ofo95] were cited as having discussed different
magnet arrays analytically. Of these, [Ata97] examined discrete Halbach arrays with
three and four segments per pole, while [Mar92] and [Ofo95] treated arrays with two
segments per pole.

Figure 8.1 shows some examples of different permanent-magnet arrays, where
the stator has been removed for clarity. In Figure 8.1(a), a standard radial array is
shown with a customary 80% pole arc1. For a four-pole machine, this translates to
72◦. The radial array may also be called the discrete Halbach array with 1 segment
per pole.

Figures 8.1(b), (c) and (d) show discrete Halbach arrays with 2, 3 and 4 segments
per pole, respectively. In these figures, the polar magnet spans are equal for the
magnet segments. For example, for the discrete Halbach array with 2 segments per
pole, an equal magnet span translates into a 50% span per magnet. For the four-pole
machine shown as an example, the magnet polar arc then becomes 45◦. The other
two arrays have correspondingly smaller polar magnet spans since they have more
segments per pole.

1A 80% pole arc means that 80% of the circumference is filled with magnet material



Optimization 165

fm2     = 72º fm2     = 45º

(a) (b)

fm2     = 30º fm2     = 22.5º
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Figure 8.1: Examples of different permanent-magnet arrays for a four-pole external

rotor machine: (a) the standard 80% pole arc radial array (or 1 segment

per pole discrete Halbach array); (b), (c) and (d): discrete Halbach arrays

with: (b) two segments per pole; (c) three segments per pole; and (d) four

segments per pole.

In this thesis, the only arrays solved analytically were those of Figures 8.1(a)
and (b). Due to lack of time, more segments per pole could not be investigated.
However, the ideal Halbach array was also included in the analysis in the thesis. This
array, also described in [Ata97], is formed by continuing the process of Figure 8.1.
The number of segments per pole is increased to infinity while each segment has
zero magnet span. This results in a sinusoidally magnetized array as described in
Chapter 5, and may be regarded as the limit of the process of increasing the number
of segments per pole.
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Solving for the magnetic field of other array types entails finding expressions
for the remanent magnetization as in (5.17):

Brem = Brem,r îr + Brem,φ îφ. (8.1)

The remanence should first be written down as in (5.10) for the radial array, and
then converted into a Fourier-series representation as in (5.12). In the discrete Hal-
bach array, the Fourier-series representation of the radially magnetized magnets was
also given by (5.12), while that of the tangentially magnetized magnets was given by
(5.19). In some of the magnet segments in Figure 8.1, both a radial and a tangen-
tial component exist simultaneously, requiring an expression from (8.1) with both a
radial and a tangential component for those segments.

Another important remark about the discrete Halbach array with 2 segments
per pole is that this array, as solved in Chapter 5, did not have the 50/50 ratio as
shown in Figure 8.1(b). It was made to have a 80/20 magnet-span ratio between the
radially and tangentially magnetized magnets instead. The reason for this is that
it corresponds to the radial array discussed in Chapter 5, with the air between the
radially magnetized magnets filled up with tangentially magnetized magnets. In the
next two subsections, variations in pole arc and the corresponding ratios between
radially and tangentially magnetized magnets will be studied, first for the radial
array and then for the discrete Halbach array.

8.3.3 The influence of pole arc variation and the number of pole
pairs on torque and loses

Electromagnetic torque

The radial and discrete Halbach arrays may be compared with respect to their torque
production when varying the polar magnet span. This has been done in Figure 8.2
for the fundamental space and time harmonic component, which also shows the
torque of the ideal Halbach array for comparison. (The angle φm is not defined for
the ideal Halbach array.)

Figure 8.2 shows the variation in electromagnetic torque for varying pole arc
and four different numbers of pole pairs: Figure 8.2(a): p = 1, (b): p = 2, (c): p = 3
and (d): p = 4.

From Figure 8.2, the following observations may be made:

• The difference between the torque produced by the radial and discrete Halbach
arrays gets smaller with increasing pole arc. At a polar arc of 100%, these two
arrays are the same since no tangential magnets are left.

• The difference between the torque produced by the radial and discrete Halbach
arrays gets larger as the pole number gets higher.

• The polar arc where the radial and discrete Halbach arrays produce more torque
than the ideal Halbach array gets larger for more poles. This effect is slight for
the discrete Halbach array but strong for the radial array.
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Figure 8.2: Fundamental space and time harmonic component of the torque as a func-

tion of the the polar magnet span and the number of pole pairs.

• The torque drops for all three arrays as more poles are used. This is due to
the fact that for more poles but the same geometry (machine radii and axial
length), less flux crosses the air gap to interact with the winding.

• The difference in torque between the two and four pole arrays is small.

Rotor loss

The second and third optimization criteria treated in this chapter are #2 and 3 of
Section 8.2.1, i.e. very low rotor loss and low induced stator losses.

The shielding cylinder loss is not influenced by pole arc variation; it is a function
of the number of pole pairs. For the EµFER geometry and for the second current
waveform of Figure 6.5, the induced rotor loss is equal to: p = 1: 143.7 W; p = 2:
90.13 W; p = 3: 72.9 W; p = 4: 58.8 W.
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Induced stator iron losses

Figure 8.3 shows the total losses induced in the stator iron calculated by (7.52) as a
function of the polar magnet span and the number of pole pairs: (a) p = 1; (b) p = 2;
(c) p = 3; (d) p = 4. The calculation was done for the first 13 space harmonics.

From Figure 8.3, the following observations may be made:

• The difference between the losses induced by the radial and discrete Halbach
arrays gets larger with increasing pole arc.

• The difference between the losses induced by the radial and discrete Halbach
arrays gets larger as the pole number gets higher. This is clearly seen at the
lowest pole arc, where the difference starts to become visible. For p = 4, it is
almost over the entire range of magnet span, depicted in Figure 8.3.

• The polar arc at which the radial and discrete Halbach arrays induce higher
losses than the ideal Halbach array gets larger at higher pole pair numbers.

• The losses decrease for all three arrays as more poles are used.

Induced stator winding loss

Since the induced eddy current loss in the stator copper is approximately an order of
magnitude lower than the induced iron losses,2 it is not included in the discussion in
this chapter. It is valid to neglect the induced stator winding loss in an optimization
routine since the stator can be cooled much more efficiently than the rotor.

8.3.4 A magnet span larger than 80%

As already mentioned before, a polar magnet span of 80% is often used for the radial
array in industry today. The reason for not using a (much) larger span is evident
when field plots are examined. Figure 8.4 shows six field plots: three for the radial
array and three for the discrete Halbach array with 2 segments per pole. For both
these arrays, three different pole arcs are plotted: 50%, 80% and 100%.

From Figures 8.4(a) and (b) it can be seen that the flux from one magnet to an-
other in the radial array is increased as they come closer to one another. In the ex-
treme case of a 100% pole arc of Figure 8.4(c), the leakage from magnet to magnet is
seen to be very substantial.

In Figure 8.4(d), the 50/50 Halbach array is clearly seen to reduce the flux den-
sity in the rotor back iron. This is also seen in the 80/20 ratio of Figure 8.4(e), but to
a lesser extent. The leakage flux is not substantially reduced when compared with
the radial array of Figures 8.4(a) and (b) however.

For the 100% pole arc case of Figures 8.4(c) and (f), the two arrays are identical
since there is no tangentially magnetized material.

2It was designed to be so by choosing the Litz wire strand diameter very small.
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Figure 8.3: Total stator iron loss for the first 13 space harmonics as a function of the

polar magnet span and the number of pole pairs.

8.3.5 Magnet skewing

It is customary to skew the magnets with respect to the stator to reduce or elimi-
nate the cogging torque. Since the machine discussed in this thesis has no slots, the
cogging torque is zero anyway, negating the need for magnet skewing.

8.4 Winding distribution

8.4.1 Introduction: Four different winding distributions

In Chapter 3, the EµFER machine’s 1-2-2-1 winding distribution was introduced.
This section will investigate four other winding distributions, shown in Figure 8.5,
and their effects upon important quantities.

The winding distributions of Figure 8.5 are: (a) the 1-2-2-1 distribution of Chap-
ter 3, (b) a 1-1-2-1-1, (c) a 2-2-2 and (d) a 3-3 distribution. For the following discus-
sion, the winding factors defined in Appendix A are used. The winding parameters
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(a) (b) (c)

(d) (e) (f)

Figure 8.4: Magnetic field lines for different polar magnet spans: radial array: (a) 50%;

(b) 80%; (c) 100%; discrete Halbach array with 2 segments per pole: (d)

50%; (e) 80%; (f) 100%.

of the first three are the same except for the pitch angle. In all three, m = 3, p = 2,
q = 3, N = 12, they have 1 conductor/slot/layer and all are two-layer windings.
These three windings all have s = 2mpq = 36 slots. The 3-3 winding distribu-
tion differs in the number of slots per pole per phase, q, and is a three-layer wind-
ing. It has s = 24 slots. In all four winding distributions, the slot-opening angle is
ϕso = 0.8(2π/s). A summary of these four distributions, of which phase a is shown
in Figure 8.5, is as follows:

• 1-2-2-1 distribution: ϕpitch = 2π
s = π

18 rad;

• 1-1-2-1-1 distribution: ϕpitch = 4π
s = π

9 rad;

• 2-2-2 distribution: ϕpitch = 0 rad; and

• 3-3 distribution: q = 2 and ϕpitch = 0 rad.
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Figure 8.5: Phase a of four different winding distributions: (a) 1-2-2-1; (b) 1-1-2-1-1; (c)

2-2-2; and (d) 3-3.

8.4.2 Electromagnetic torque

The fundamental space and time harmonic of the electromagnetic torque for the four
different winding distributions of Figure 8.5 and the radial and discrete Halbach
arrays is:

• 1-2-2-1: Radial: 135.7 Nm; Discrete Halbach: 139.71 Nm

• 1-1-2-1-1: Radial: 129.48 Nm; Discrete Halbach: 133.3 Nm

• 2-2-2: Radial: 137.8 Nm; Discrete Halbach: 141.87 Nm

• 3-3: Radial: 138.11 Nm; Discrete Halbach: 142.19 Nm

These results were calculated for 80% polar magnet arcs. The torque results above
shows that the winding distribution has an influence on the torque, but it is small.

8.4.3 Induced loss in the shielding cylinder

Concerning losses, the only loss component of interest with variation in the winding
distribution is the induced loss in the shielding cylinder. The stator iron losses are
not influenced by the use of a different winding distribution since the stator current
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|k| \ |n| 1 5 7 1 5 7

1-2-2-1 1-1-2-1-1

1 0 54.94 20.23 0 50.02 18.42

5 4.319 0 0.0622 0.3152 0 0.0045

7 0.2599 0.0103 0 1.304 0.0515 0

2-2-2 3-3

1 0 56.65 20.86 0 56.91 20.95

5 10.45 0 0.1505 11.94 0 0.1718

7 2.222 0.0878 0 3.027 0.1196 0

Table 8.1: The induced loss in the shielding cylinder [W] for the four different winding

distributions of Figure 8.5 and the current waveform of the CSI with α = 42◦

of Figure 6.5. The totals are: 1-2-2-1: 79.8 W, 1-1-2-1-1: 70.1 W, 2-2-2: 90.4 W,

and 3-3: 93.1 W.

field is neglected in its calculation. The stator winding loss is also neglected in the
optimization routines since it is very small compared to the stator iron losses.

Table 8.1 compares the induced loss in the shielding cylinder in the case of the
four different winding distributions of Figure 8.5. These calculations were done for
the current waveform of the CSI with α = 42◦ of Figure 6.5. The induced loss is a
function of the square of the winding distribution, n̂2

s,k, as can be seen from equation
(6.64). This explains the small difference in the induced loss of the 1-2-2-1 and the
3-3 distributions.

8.4.4 Winding distribution: Comparison and conclusion

It is clear from the torque calculations of Section 8.4.2 and Table 8.1 that the winding
distribution only plays a minor role in both the torque production and the induced
rotor loss. The following remarks may be made by investigating these tables:

• The 2-2-2 winding distribution is very similar to the 3-3 distribution. This could
already be seen in Figure 8.5.

• For the torque, the differences in the higher-order harmonics are negligible.
The large mass moment of inertia of the flywheel further strengthens this fact.

• Comparing the fundamental torque components listed in Section 8.4.2, one
sees that the 3-3 distribution produces the highest torque. However, the 1-2-2-1
distribution used in the EµFER machine produces only 1.8% less torque.

• The largest shielding cylinder loss component is that for the fundamental space
and the fifth time harmonic.

• The lowest induced loss is for the 1-1-2-1-1 winding distribution; the 1-2-2-1
distribution of the EµFER machine results in 8.9% higher loss for the funda-
mental space and fifth time harmonic component. However, the ratio of effec-



Optimization 173

tive output power to the induced loss of the 1-2-2-1 distribution is 9.4% higher
than that of the 3-3 distribution.

In conclusion, one can say that the winding distribution influences the torque
production hardly at all and the induced rotor loss only a little.

8.5 Machine geometry

8.5.1 Introduction

This section looks at the ratios between the dimensions of different parts of the ma-
chine and the influence thereof on the electromagnetic torque production and losses.

8.5.2 Machine radii variation

Figure 8.6 shows the radii that are varied in a sweeping fashion while the rest is
kept constant. The constant radii are the stator outer radius rso and the magnet outer
radius rmo. The three radii in between, rw, rci and rco = rmi, are varied with a constant
ratio to each other. In other words, the magnet inner radius rmi is varied with respect
to rso and rmo, and while doing this, the distance between rmi, rci and rw remains
constant. Therefore, a constant mechanical air gap rci − rw is assumed, and also a
constant shielding cylinder thickness rco − rci.

By this variation, a ratio between the magnet thickness and the total distance

r

r    = r
r

rw

rro

r
so

mi

mo

si

co

rci

{

fixed

fixed
varied

Figure 8.6: Definition of the radii that are varied and those that stay constant in a study

of electromagnetic torque and losses as a function of the machine geometry.
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between the stator and rotor surfaces can be defined:

Rm ≡ rmo − rmi

rmo − rso
. (8.2)

8.5.3 Electromagnetic torque

By sweeping the ratio Rm for a constant current density and calculating the funda-
mental space and time harmonic component of the electromagnetic torque, inter-
esting observations may be made. Graphs that relate Rm to the torque appear in
Figures 8.7 and 8.8. These graphs were drawn for four arrays: the radial array with
a magnet span of 80%, a discrete Halbach array with 50% magnet span (i.e. 50/50
ratio between radial and tangential magnets), the same array with a 80/20 ratio, and
the ideal Halbach array.

The results of Figures 8.7 and 8.8 are shown for four different values for the
stator outer radius rso: rso = 0.3 rmo, rso = 0.5 rmo, rso = 0.735 rmo and rso = 0.9 rmo.
The ratio of rso to rmo indicates how large the active air gap length is, i.e. the length
between the stator and rotor surfaces. This is the space for the winding and the
permanent magnets.

The EµFER machine that was extensively discussed in this thesis has a distance
between rotor and stator surfaces characterized by the ratio rso/rmo = 0.735, i.e. that
of Figure 8.7(c) and (g) and Figure 8.8(c) and (g). The ratio between the magnet
thickness and this active distance is Rm = 0.329 in the EµFER machine, therefore the
magnets occupy approximately a third of the thickness of the active air gap length,
and the winding approximately two thirds. The value of Rm for the EµFER machine
is indicated by a vertical line.

Several observations may be made from Figures 8.7 and 8.8. These include:

• For p = 1 and p = 2, the 80/20 discrete Halbach array produces the highest
torque for almost all Rm and rso/rmo. The exception is for small rso/rmo (large
air gap) and large Rm (thick magnets), where the ideal Halbach array produces
higher torque.

• For a high number of pole pairs, large air gap and thick magnets, the ideal
Halbach array produces the highest torque.

• The differences between the radial, 80/20 discrete Halbach and ideal Halbach
arrays decrease with decreasing air gap for all p.

• The 50/50 discrete Halbach array always produces less torque than the other
three arrays, except for high p, a large air gap and thick magnets.

• From Figures 8.7(a) and (e) and 8.8(a) and (e) it can be seen that for higher
pole pair numbers and large air gaps, the maximum torque point is reached
for thinner magnets in relation to the total air gap length (low Rm between 0.2
and 0.3) than for lower pole pair numbers. As the air gap length is decreased,
as in Figures 8.8(b) and (f), this maximum is reached for
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Figure 8.7: Relationship between the torque and Rm for p = 1 and p = 2.
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Figure 8.8: Relationship between the torque and Rm for p = 3 and p = 4.
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thicker magnets (Rm between 0.4 and 0.5). For very small air gaps, as in Fig-
ures 8.8(d) and (h), the maximum point shifts back towards an Rm between 0.2
and 0.3. This effect is also present for small p, but it is less pronounced.

• The radial array produces less torque in relation to the Halbach arrays when
the air gap length, pole pair number and magnet thickness are increased.

• The highest torque of Figures 8.7 and 8.8 is found in Figures 8.7(b). Here, Rm is
just over 0.4, the machine has one pole pair and the array is the 80/20 discrete
Halbach array with two segments per pole. The torque is just under 200 Nm.

8.5.4 Losses

Only the stator iron losses due to the rotating permanent magnets and the rotor
loss induced in the shielding cylinder by the stator currents are investigated in this
subsection. The reason for neglecting the induced loss in the stator winding was
discussed earlier in this chapter.

The stator iron losses due to the rotating permanent magnets

Figures 8.9 and 8.10 show the induced losses (consisting of a hysteresis and an eddy
current loss component, i.e. the total losses discussed in Chapter 7) as a function of
Rm for constant current density. The same air gap lengths as used in Figures 8.7 and
8.8 are used in Figures 8.9 and 8.10.

The observations that can be made from Figures 8.9 and 8.10 include:

• For p = 1 and small air gaps (see Figure 8.9(d)), the 50/50 discrete Halbach ar-
ray induces similar total stator losses as the ideal Halbach array. As p increases,
this array induces less losses than the ideal Halbach array.

• For all p and air gap lengths, the radial and 80/20 discrete Halbach arrays
induce approximately the same losses. The difference increases as the number
of pole pairs and Rm is increased. In this case, higher losses are induced by the
80/20 discrete Halbach array.

• For low p and large air gaps, the increase in losses is a weaker function of Rm

for the radial array than for the other three arrays.

The induced loss in the shielding cylinder by the stator currents

As indicated in Section 8.3, the eddy current loss induced in the shielding cylinder is
a function of the number of pole pairs; not the permanent-magnet array. Figure 8.11
shows the induced loss in the shielding cylinder for the CSI-waveform of Figure 6.5
with α = 42◦ for constant current density. The results are shown for varying Rm

for four different total air gap lengths: (a) rso = 0.3 rmo; (b) rso = 0.5 rmo; (c) rso =

0.735 rmo; and (d) rso = 0.9 rmo.
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Figure 8.9: Relationship between the total stator loss and Rm for p = 1 and p = 2.
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Figure 8.10: Relationship between the total stator loss and Rm for p = 3 and p = 4.
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Figure 8.11: Induced loss in the shielding cylinder for the CSI-waveform of Figure 6.5

with α = 42◦ for constant Js as a function of Rm: (a) rso = 0.3 rmo; (b)

rso = 0.5 rmo; (c) rso = 0.735 rmo; (d) rso = 0.9 rmo.

One can see from Figure 8.11 that:

• The induced loss is lower for larger pole pair numbers.

• The induced loss drops to zero at large Rm since at a certain point, there is no
more winding area and consequently zero stator current is reached. The exact
value of Rm at which this occurs, is different for different air gap lengths since
the mechanical air gap and the shielding cylinder thickness was kept constant.

• The difference in induced loss between the different pole pair numbers de-
creases with the air gap length.

The induced loss in the shielding cylinder for varying cylinder thicknesses

Figure 8.12 shows the induced loss in the shielding cylinder for varying cylinder
thicknesses. One may see from Figure 8.12(c) that for the EµFER air gap of
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Figure 8.12: Induced loss in the shielding cylinder for the CSI-waveform of Figure 6.5

with α = 42◦ for constant Js as a function of the cylinder thickness: (a)

rso = 0.3 rmo; (b) rso = 0.5 rmo; (c) rso = 0.735 rmo; (d) rso = 0.9 rmo.

rso = 0.735 rmo and p = 2, the induced eddy current loss in the shielding cylinder
was not substantially reduced if the cylinder was thicker than 1 mm.

8.5.5 Conclusion

A clear maximum torque is reached in Figures 8.7 and 8.8 for defined values of Rm.
It is therefore possible to optimize the geometry by using the torque as criterion.

However, no clear minima for the total stator losses of Figures 8.9 and 8.10 exist
(except for Rm = 0, but then the torque is also zero). There is instead a steady in-
crease in stator losses with Rm. Minimizing the total stator losses as a function of Rm

is therefore not possible, although one can use the torque optimization of Figures 8.7
and 8.8 in conjunction with the losses of Figures 8.9 and 8.10 to come to a trade-off
solution. The stator inner radius rsi may of course be selected to minimize the total
stator losses, as shown in Figure 7.2 in Chapter 7.

For the induced eddy current loss in the shielding cylinder, from Figure 8.12
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values of cylinder thickness exist where the induced loss in the shielding cylinder is
a minimum. This may thus also be used as an optimization criterion.

8.6 The optimum machine geometry for constant Js

8.6.1 Optimization algorithm

To find the optimum machine geometry, the radii that were kept constant in the
previous section, rso and rmo, are allowed to vary now. The only radius that is still
fixed is rro, for mechanical reasons.

It is decided that the torque is the most important criterion. The geometry opti-
mization strategy for the torque, total stator losses and induced eddy current loss on
the rotor is therefore chosen as having the following steps:

1. Te,1,1 is maximized as a variable of all radii except rsi (which has no effect on
the torque), rro (which is fixed due to the maximum strength and dimensions
of the carbon fibre flywheel), and rmo (which is maximized in step 2). Radii rw,
rci and rco are kept in constant ratio to each other during this step. (This ratio
is revised in step 4.)

2. The flux density in the rotor iron is set to be 2.0 T maximum. Radius rmo is thus
adjusted to be the correct distance from rro to result in this flux density. After
the adjustment, step 1 is again performed. This is iterated until the optimum
torque is reached for a rotor iron flux density below 2.0 T.

3. The total stator loss is minimized by choosing a rsi to result in the maximum
allowable value (rso has been obtained in steps 1 and 2).

4. The induced rotor loss is the last step. We have seen in Figure 8.11 that mini-
mum shielding cylinder loss requires large Rm. (Large Rm corresponds to a low
winding height hw and a lower required current for the same torque, since the
magnets are thicker. Lower currents induce lower losses in the shielding cylin-
der.) For optimum torque, however, large Rm is not preferred. Therefore, like
for the stator losses, for the rotor loss a maximum allowable value is chosen.
The shielding cylinder thickness is adjusted until the loss is below this value
(see Figure 8.12). If it cannot be reached, steps 1, 2 and 3 are again performed,
requiring this time an increase in Rm, i.e. the torque is reduced.

In optimization, one soon runs into convergence issues and other numerical
problems. This was certainly also the case here. Step 1 of the algorithm listed above
was implemented by the function fminsearch that is available in MATLAB R© for un-
constrained nonlinear minimization of scalar functions of more than one variable.
This function implements the Simplex method, which is a direct search method.
The constraints, for example the requirement that all radii be positive and in the
order: rso < rw < rci < rco < rmo < rro, have been implemented separately from
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fminsearch. Steps 2, 3 and 4 have been implemented without special tools like this
MATLAB R© function. If a jump back to Step 1 is required, new constraints should be
implemented in that step.

8.6.2 Optimization result

Only the results for the same permanent-magnet array and number of pole pairs as
those for the EµFER machine are discussed here: a radial array and p = 2. Before the
result of the optimization process is started, it is noted that Te,1,1 = 121.68 Nm and
B̂ry = 2.03 T for the EµFER machine, where B̂ry is the peak value of the rotor yoke
flux density. The induced eddy current loss on the rotor of the EµFER machine is
91.83 W (up to the 19th space and time harmonic) for the CSI waveform of Figure 6.5
with α = 42◦.

Step 1. The optimization process is started with fminsearch as described in
Section 8.6.1 with the EµFER machine’s geometry as initial values. The resulting
geometry, fundamental torque and peak flux density in the rotor iron is:

• rso = 69.921 mm; rw = 104.35 mm; rci = 110.35 mm; rco = 111.35 mm;
rmo = 137.5 mm; rro = 150 mm; Te,1,1 = 172.33 Nm; B̂ry = 2.5375 T;
rso/rmo = 0.50852; Rm = 0.387.

It is seen that the peak flux density in the rotor iron is slightly too high. Step 2 is
therefore performed to reduce it to below 2.0 T:

Step 2. The rotor yoke thickness is increased from 12.5 mm to (150 − 137.5) ×
2.5732/2.0 = 16.083 mm, i.e. the radius rmo is adjusted to 133.92 mm. Now, Step 1 is
done again. The result is:

• rso = 68.036 mm; rw = 101.66 mm; rci = 107.66 mm; rco = 108.66 mm;
rmo = 134.14 mm; rro = 150 mm; Te,1,1 = 158.85 Nm; B̂ry = 1.9477 T;
rso/rmo = 0.5072; Rm = 0.38539.

Step 3. Radius rsi is found by choosing a maximum accepted value for the stator
losses. If this value is chosen as 4 kW, the stator yoke thickness is bsy = 45 mm and
rsi = 23.036 mm. The resulting total stator losses are: Ps,Fe,t = 3724.7 W.

Step 4. The optimum machine with a shielding cylinder thickness of 1.0 mm
experiences 156.35 W rotor loss for the CSI waveform of Figure 6.5 with α = 42◦

(scaled so that the current density is constant). For 0.5 mm, this is 295.95 W and
for 2.0 mm: 116.09 W. The shielding cylinder thickness is therefore made 2 mm. (A
thicker cylinder is not possible since the mechanical air gap minimum is around
5 mm. The new value of the shielding cylinder thickness changes rci to 106.66 mm
while rco and the other radii remain unchanged.

The geometry of the EµFER machine does not differ much from the optimum
geometry. The reason for the small difference is that thinner magnets were chosen
because of their high cost.
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8.7 Converter options for the flywheel drive: Influence

on the rotor loss

8.7.1 Introduction

The main converter options for interfacing the EµFER machine with the DC bus in
the energy storage system were already mentioned in Chapter 3: the voltage source
inverter (VSI) and current source inverter (CSI). There it was briefly shown that a VSI
is a better choice than a CSI when maximizing the system power level is the main
consideration. This section continues this discussion by looking at the converter-
dependent eddy-current loss induced in the shielding cylinder.

In [Den97] and [Den98], Deng analyzed eddy current losses in the permanent
magnets and rotor iron in permanent-magnet synchronous machines. In the first pa-
per, she calculated these losses for a CSI converter connected to the machine. The
emphasis in that paper was the commutation-caused loss, i.e. the high-frequency
part of the effect of the CSI waveform on the induced loss. In [Den98], she did an-
other analysis on eddy current losses in the magnets and rotor iron, this time for
PWM waveforms, i.e. for when a VSI is connected to the machine. These papers
showed that it basically boils down to the harmonic content of the stator current
waveform. In trying to find reductions of the harmonic content, one has to look at
the origin of the harmonics in the converter, as Deng has done. This is beyond the
scope of this thesis, however. Only the influence of typical CSI and VSI waveforms
on the induced eddy current loss in the shielding cylinder will be investigated.

8.7.2 Influence of using a VSI or CSI on the rotor loss

Current waveform of an idealized CSI

In Section 6.8 the induced loss in the shielding cylinder was discussed, using two
CSI current waveforms and the ideal bridge rectifier current waveform as examples.
In this section, an idealized CSI current waveform will be described containing only
the effects of the commutation angle u.3 An example of the idealized waveform for
α = 30◦, u = 12◦ and a rotational velocity of 15 000 rpm is shown in Figure 8.13.

The induced loss in the shielding cylinder due to the idealized waveform of
Figure 8.13 is shown in Figure 8.14 as a function of the commutation angle u for
α = 0◦. The loss of Figure 8.14 was calculated for 7 space harmonics and 67 time
harmonics. It can be seen from Figure 8.14 that the lowest loss occurs at just over
u = 30◦ and remains fairly constant between 30◦ and 60◦. From this graph, the
necessity of a series inductor with the machine to limit the di/dt during commutation
may be determined, as well as its value. (In practise, however, a series inductor not

3Mosebach and Canders did a similar investigation of the current waveform as a function of the com-
mutation angle (among others) [Mos98c]. In their paper, the effects of this parameter on the thrust of a
linear machine is investigated.
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only limits the di/dt, but also the output power. Therefore, adding an inductor is not
a good practical solution.)

Current waveform of an idealized VSI

For PWM converters it is customary to introduce the amplitude modulation ratio:

ma ≡ v̂control

v̂tri
, (8.3)

where vcontrol(t) is the control signal and vtri(t) is a signal with triangular waveform.
For a three-phase inverter, there are three control signals, having the desired wave-
form shape and frequency, and shifted with respect to each other by 2π/3 and 4π/3:
vcontrol,a(t), vcontrol,b(t) and vcontrol,c(t). The signals vcontrol(t) and vtri(t) are com-
pared by means of a comparator, and the on states of the semiconductor switches of
the three-phase bridge are controlled by the output of these three comparators.

Another modulation ratio used in PWM converters is the frequency modulation
ratio:

m f ≡
fsw

fs
, (8.4)

where fsw is the switching frequency of the bridge and fs the fundamental frequency
of the desired voltage waveform, i.e. the stator fundamental frequency and of course
also the frequency of vcontrol,a(t), vcontrol,b(t) and vcontrol,c(t).

In Mohan’s textbook on Power Electronics [Moh95], three-phase VSI PWM (pulse-
width modulation) considerations are listed as:

1. For low values of m f , to eliminate even harmonics, a synchronized PWM should
be used and m f should be an odd integer. Moreover, m f should be a multiple
of 3 to cancel out the most dominant harmonics in the line-to-line voltage.

2. For large values of m f , the subharmonics due to asynchronous PWM is small
and this PWM scheme may thus be used. However, in machines, even low-
amplitude subharmonics can cause large currents at low frequencies (close to
zero) and therefore asynchronous PWM should be avoided.

3. During overmodulation (ma > 1), regardless of the value of m f , the conditions
pertinent to a small m f should be observed.

Since the power level of this machine is quite high, the ratings of the semiconductors
require a m f that is as low as possible to limit the switching loss of the IGBTs. The
first consideration above therefore applies, and m f = 15 is chosen for the comparison
with the CSI in this section. The time harmonic components of a VSI waveform
are centered around integer multiples of the fundamental frequency as sidebands.
There are components at (m f ± 2) fs, (m f ± 4) fs, (2m f ± 1) fs, (2m f ± 5) fs, (3m f ±
2) fs, (3m f ± 4) fs, (4m f ± 1) fs, (4m f ± 5) fs, (4m f ± 7) fs, etc.
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Figure 8.15: A typical PWM VSI current waveform calculated by a table of harmonics

[Moh95]: (a) as a function of time; and (b) spectral content.

Figure 8.15 shows a typical three-phase PWM VSI current waveform as calcu-
lated by a table of harmonic content in [Moh95]; Table 8.2 lists the harmonic compo-
nents and the induced loss in the shielding cylinder for this waveform.

The harmonic components and induced shielding cylinder loss of the CSI cur-
rent waveform of Figure 6.5 (firing angle α = 42◦) is also listed in Table 8.2. The
fundamental harmonic of the two current waveforms of Table 8.2 were made equal.

The loss for the CSI is dominant at low frequencies, since this is where the ma-
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jority of its distortion components lie. The loss of the VSI waveform is concentrated
around the 15th, 30th, 45th, (etc.) harmonic components in sidebands. The total loss
in the shielding cylinder for the CSI is 72 W and that for the VSI is ten times higher:
700 W. The high shielding cylinder loss is a very serious problem since it is mounted
on a rotor rotating at very high speeds in vacuum, making it very difficult to cool.

In spite of the fact that more power can be withdrawn from or supplied to the
machine with a VSI than with a CSI, this converter is not chosen for the EµFER
flywheel system.

The higher shielding cylinder loss is not the only reason for not choosing a VSI
for the EµFER system, however. The losses in the converter itself are also much
higher than in the case of a CSI. This is due to the high switching losses, since the
switches are switched on and off at high voltages and currents. The losses in the
converter fall outside the scope of this thesis, as are techniques for lowering these
losses; we do remark, however, that these losses are high for a switching frequency
of 15 kHz and the required IGBTs are expensive and scarce.

8.8 Generalization of the analytical model

The analytical model developed in this thesis for the EµFER machine is only valid
for that geometry: a slotless-stator external-rotor permanent-magnet machine with
surface-mounted magnets and a shielding cylinder. With some modifications, this
model may be generalized to other geometries. One machine construction that would
be of particular interest is that of the EµFER machine, but with a slotted stator.

The permanent-magnet field of Chapter 5 is valid without modification for such
a machine. The stator current field of Chapter 6 needs some modification since it
was derived for a current density in the air gap, while a surface current density on
the stator surface is customarily used for slotted machines. One way to solve the
problem is to use the same model, but for a very thin winding height hw. This has
not been investigated, however, and further research into this is recommended.

8.9 Summary and conclusions

This chapter discussed some aspects of optimization of slotless permanent magnet
flywheel machines by utilizing the analytical model that has been derived in Chap-
ters 4–7.

Section 8.2 started the discussion by looking at possible optimization criteria
and independent variables.

The three criteria chosen were the electromagnetic torque, total stator losses and
rotor loss in the shielding cylinder.

Sections 8.3 and 8.4 looked at the influence of the permanent-magnet array and
the winding distribution on these three quantities. Section 8.5 discussed machine
geometry optimization, while Section 8.6 made use of these results to find the opti-
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CSI: current harmonic content [A]

|n| 1 5 7 11 13 17 19 23

401.06 75.83 46.01 16.60 26.02 9.19 5.99 1.83

|n| 25 29 31 35 37 41 43 47

2.298 1.997 2.349 2.506 2.472 1.649 1.438 0.907

|n| 49 53 55 59 61 65 67

0.4876 0.6544 0.7958 0.8786 1.124 0.6979 0.5938

CSI: loss in the shielding cylinder [W]

|n| 1 5 7 11 13 17 19 23

0 45.43 16.72 2.357 5.805 0.8118 0.3448 0.0362

|n| 25 29 31 35 37 41 43 47

0.0572 0.0486 0.0673 0.0851 0.0829 0.0405 0.0308 0.0133

|n| 49 53 55 59 61 65 67

0.0038 0.0074 0.0109 0.0143 0.0233 0.0095 0.0069

VSI: current harmonic content [A]

|n| 1 5 7 11 13 17 19 23

401.06 0 0 7.21 127.8 127.8 7.21 0

|n| 25 29 31 35 37 41 43 47

13.11 72.74 72.74 13.11 0 62.91 24.9 24.9

|n| 49 53 55 59 61 65 67

62.91 19.66 47.84 27.52 27.52 47.84 19.66

VSI: loss in the shielding cylinder [W]

|n| 1 5 7 11 13 17 19 23

0 0 0 0.446 140.0 156.6 0.4984 0

|n| 25 29 31 35 37 41 43 47

1.861 64.47 64.47 2.329 0 58.96 9.238 10.03

|n| 49 53 55 59 61 65 67

63.99 6.71 39.7 13.99 13.99 44.61 7.53

Table 8.2: A comparison of the induced eddy current loss in the shielding cylinder

due to typical CSI (Figure 6.5) and VSI (Figure 8.15) waveforms for the same

fundamental harmonic.

mum machine geometry for a fixed rotor outer diameter. The influence of the choice
of converter on the induced rotor loss was briefly discussed in Section 8.7, and some
remarks on generalizing the analytical machine model were made in Section 8.8.

A summary of the most important conclusions reached in this chapter is:

• Magnet array optimization:

– The discrete Halbach array produces more torque for all φm than the radial
array, but the gap between the two becomes smaller at a larger magnet
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span, which is expected since at 100%, the two arrays are the same.

– The torque is lower if more pole pairs are used in the same machine ge-
ometry and array.

– Torque increases with pole arc for the radial array and discrete Halbach
array.

– The total stator losses increase with increasing pole arc.

– The total stator losses decrease with increasing number of pole pairs.

– The induced loss in the stator winding may be neglected since it is ap-
proximately 20 times lower than the stator iron losses, and the stator can
easily be cooled.

– A larger span than approximately 80% in the radial and discrete Halbach
arrays is not useful because of the short-circuit field between adjacent
magnets.

– Magnet skewing is not necessary since the stator is slotless.

• Winding optimization:

– The winding distribution has very little influence on the torque produc-
tion and little influence on the induced rotor loss.

• Machine geometry optimization:

– Halbach arrays produce more torque than the radial array for large air
gaps and thick magnets.

– As the number of pole pairs is increased, Halbach arrays produce more
torque than the radial array for large air gaps and thinner magnets. The
torque is substantially higher for p = 4, and higher with a large air gap.

– For small air gaps, the torque production of the arrays becomes more and
more similar, and for very small air gaps, they are the same. One excep-
tion is the 50/50 discrete Halbach array, which produces much less torque
than the other arrays for small air gaps.

– For small air gaps and small p, the radial array induces approximately the
same stator losses as the ideal Halbach array.

– For all p and air gap lengths, the radial and 80/20 discrete Halbach arrays
induce more or less the same stator losses. The difference increases with
the number of pole pairs and the magnet thickness.

– The induced eddy current loss in the shielding cylinder decreases with an
increasing number of pole pairs.

– This difference gets smaller for a decreasing air gap.

– An optimization algorithm has been introduced which places the highest
emphasis on torque, then considers the induced stator losses and lastly
the eddy current loss in the shielding cylinder.
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– With this algorithm, the optimum machine dimensions have been found
for a given rotor outer radius (inner radius of the carbon fibre flywheel).

• Converter options for the flywheel drive:

– A VSI allows a higher power level to be withdrawn from or supplied to
the machine than when a CSI is used (from Chapter 3).

– A VSI induces much higher eddy current loss in the shielding cylinder
than a CSI.

– The choice of converter not only depends on the power level that can be
withdrawn from the machine and the induced rotor loss, but also on the
conduction and switching losses in the converter itself. This has not been
considered in this thesis.

• Analytical model generalization:

– The analytical model derived in this thesis is only valid for external-rotor
permanent-magnet machines with slotless stators.

– The permanent-magnet field model of Chapter 5 is also valid for slotted
machines.

– The stator current field model of Chapter 6 may be adapted for use in
slotted machines by making the winding height hw very small.
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CHAPTER 9

Conclusions and recommendations

As said in Chapter 1, this thesis deals firstly with finding a suitable energy storage
technology for use in a hybrid electric city bus.

Chapter 2 investigated four energy storage technologies: electrochemical, elec-
tric field, magnetic field, and kinetic (flywheel) energy storage systems.

Chapter 3 looked at drive system topologies, converter choice and machine type
for high-power flywheel energy storage systems. From Chapter 3 onward, the scope
of the rest of the thesis was limited to the electrical machine, called the EµFER ma-
chine.

The analytical model was derived in Chapters 4—7. Chapter 4 presented an
outline of the derivation, while Chapters 5 and 6 solved for the fields and derived
quantities of the permanent magnets and stator currents, respectively. Chapter 7
treated the combination of these two fields and discussed quantities derived from
the combined field.

Optimization was the topic of Chapter 8. The optimization criteria chosen were
the electromagnetic torque, stator iron losses and the induced eddy current loss in
the shielding cylinder. These were optimized with respect to the permanent-magnet
array, winding distribution, machine geometry and converter options. Chapter 8
also listed the optimum machine geometry for a given rotor outside radius.

In this chapter, conclusions are drawn from the work described in this thesis
and recommendations are made for further research.
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9.1 Conclusions

The conclusions are grouped into four categories. These correspond to the four thesis
objectives listed in Chapter 1:

1. To find the most suitable energy storage technology for use in large hybrid electric
vehicles like busses and trams.

2. To design the electrical machine for the EµFER flywheel energy storage system.

3. To optimize the machine geometry for given flywheel dimensions.

4. To derive a comprehensive analytical model of the electrical machine.

9.1.1 Energy storage technologies for large hybrid electric vehicles

With the increasing use of hybrid electric vehicles, renewable energy sources and
distributed generation, among others, the use of energy storage technologies is sure
to increase.

Concerning energy storage technologies for large hybrid electric vehicles, we
conclude that flywheel energy storage systems are ideally suited for medium-energy,
high-power applications (like large hybrid electric vehicles). This is also true on
a per-unit volume and per-unit mass basis. Composite flywheels are expected to
keep this position as the most feasible technology for medium-energy, high-power
applications in the future.

Furthermore, the continuing development of an increase in tensile strength of
composite materials also makes composite flywheels an increasingly attractive op-
tion for high-energy, high-power applications.

9.1.2 The electrical machine

In Chapter 1, the challenges for the EµFER system were said to include a high desired
power level (150 kW) and losses as low as possible, both at load and at no load.
The geometry of the flywheel called for a radial flux machine with surface-mounted
magnets and solid back-iron. To reduce the no-load loss induced in the stator iron,
the stator teeth (as used in EMAFER) were removed to obtain a slotless stator. This
in turn necessitated the use of Litz wire for the stator conductors to limit the induced
loss in the stator winding. Since the rotor rotates at 30 000 rpm in a low-pressure
atmosphere, cooling it is very difficult. This requires that very low loss is induced in
the rotor: a shielding cylinder is thus used.

With these facts as design inputs, the EµFER electrical machine was designed.
The results obtained and documented in the thesis show that the design goal of
150 kW output power was met. (The fundamental space and time harmonic power is
177 kW). Furthermore, the low-loss requirements were also met as can be seen from
the low induced rotor loss in the shielding cylinder at load and the induced loss in
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the stator at no load. The induced loss in the shielding cylinder was calculated as
124 W for a typical CSI current waveform. The induced stator iron loss was calcu-
lated as 2970 W and the induced copper loss as 115 W. The sum of these losses is
approximately 2% of the nominal power.

Conclusions about the electrical machine include:

• The magnet array (i.e. its space harmonic distribution) has a significant influ-
ence on the torque and stator losses. For example, a 20% difference between
the produced torque of the 50/50 and 80/20 discrete Halbach arrays has been
calculated for the machine geometry. The ratio of induced stator iron losses for
the three arrays discussed in this thesis were calculated as:
ideal Halbach : radial : 80/20 discrete Halbach = 1 : 1.24 : 1.38.

• The influence of the winding distribution (i.e. its space harmonics) on the
torque and losses is minimal. The fact that the winding is slotless results in
a very large air gap. The large air gap in turn results in the low space har-
monic content of the winding. The inherently low space harmonic content of
the 1-2-2-1 distribution further improves this desirable quality.

• The induced loss in the stator winding can be neglected since it is approxi-
mately 20 times lower than the stator iron losses, and the stator winding can
be cooled fairly easily with a liquid.

• For the EµFER geometry, complete shielding of the rotor already takes place at
frequencies as low as a few hundred Hertz.

Concerning the converter-machine interaction, we conclude that:

• A VSI allows a greater power level to be extracted from or supplied to the
machine than a CSI.

• A VSI induces a much larger loss in the shielding cylinder than a CSI due to
the higher harmonic content of the current waveform at high frequencies.

• When a CSI is connected to the machine, a commutation angle of above about
30◦ is desirable since it leads to a drastic reduction in rotor loss due to the
reduced spectral content.

• The choice of a suitable converter also depends on the losses in the converter it-
self, controllability, cost and other factors. This thesis did not investigate these.

9.1.3 Optimization

The optimum machine geometry for a given carbon-fibre inside radius (150 mm) has
been found in the thesis. The optimization criteria were high torque, low total stator
losses and very low rotor loss in the shielding cylinder. This optimum is:
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• rsi = 23.036 mm; rso = 68.036 mm; rw = 101.66 mm; rci = 106.66 mm;
rco = 108.66 mm; rmo = 134.14 mm; rro = 150 mm.

For this geometry, the peak flux density in the rotor yoke is B̂ry = 1.9477 T; the peak
fundamental space and time harmonic component of the electromagnetic torque is
Te,1,1 = 158.85 Nm (corresponding to a power of 249.5 kW at 15 000 rpm). The total
stator iron loss was 3725 W (it was chosen to be below 4 kW), and the induced loss
in the shielding cylinder 116 W for the same CSI current waveform that was used
throughout the thesis as an example.

The EµFER machine’s geometry is not far off from this optimum machine ge-
ometry. Magnet cost is the reason that the two geometries are not the same: thinner
magnets were used in the EµFER machine.

9.1.4 The analytical model

In order to design the electrical machine and to find the optimum geometry, some
model of the electrical machine was needed to analyze the designed geometry. In
this thesis, an analytical model was chosen. The following conclusions were drawn
regarding this model:

• The accuracy and correctness of the analytical model derived in this thesis has
been verified experimentally.

• Although it is only two dimensional, the model predicts the machine parame-
ters and behavior accurately. One can therefore conclude that three-dimensional
effects do play a role, but not a significant one. This is a surprising conclusion
since one would expect a lower accuracy because of the machine’s “flat” aspect
ratio (the rotor diameter is larger than the active axial length) and because its
air gap is very large.

• The machine needs only one voltage equation since all space and time har-
monic effects and the effect of the shielding cylinder are included in the vector
potential.

• The magnetic vector potential contains all electromagnetic information in the
machine and all machine quantities can be derived as simple functions of it.
This includes the no-load voltage, machine impedance, torque and losses.

• The analytical model described in this thesis is only valid for slotless stator,
external-rotor permanent-magnet machines with surface-mounted magnets and
a shielding cylinder. The part of the model that describes the field due to the
permanent magnets and its derived quantities (Chapter 5) is, however, also
valid for slotted stators. The field due to the stator currents may be modified
to be valid for slotted stators by making the winding height hw very thin in the
model.



Conclusions and recommendations 197

9.1.5 Thesis contributions

The main scientific contributions of this thesis may be summarized as:

• The six-layer solution of the magnetic field due to the stator current density
including the reaction field of the eddy currents in the shielding cylinder; this
solution was documented in Chapter 6. By itself, the solution of the magnetic
field of a current density is not new, neither is the eddy-current reaction field.
The combination of both, however, is unique. A unique model leads to unique
results. Two contributions follow from these:

– The derived analytical model provides a tool that can be used to calculate
the induced loss in the machine as a function of the chosen converter.
Such a tool is also a contribution.

– Chapter 8 clearly shows the power of the analytical model in finding the
optimum machine geometry for arbitrary criteria. (The criteria chosen
there were high torque and low losses.)

• Magnet array investigation. Such investigations are not new on their own.
However, the explicit investigation of polar arc variation in Halbach arrays was
not found in previous literature. (Mecrow et al. implicitly did it in [Mec03].)

• The use of the Theorem of Poynting to calculate the torque and losses in ma-
chines is not new. What has been done in this thesis, however, forms a contri-
bution, as an explicit comparison of the result of the power calculated from the
Theorem of Poynting in stator and rotor coordinates was not found in litera-
ture.

9.2 Recommendations for further research

The analytical model

Although already accurate, the analytical model may be improved. This may be
done in the following ways:

• The model’s performance may be improved by investigating ways to include
3D effects. It remains a question of whether this 3D modelling should be done
analytically. These 3D effects may be modelled separately, or space mapping
can be used. This method consists in principle of analytical expressions, with
checks by the finite element method where necessary, i.e., it is a hybrid method.

• Some work may be done on generalizing the model so that it is also valid for
other machine geometries. One improvement that must certainly be made is
to recalculate the solution of Chapter 6 for a slotted stator since these are more
commonly used. The slotted stator is a 5-layer system and significantly simpler
than the one solved in Chapter 6.



198 Chapter 9

• The analytical model is very complex, especially the stator field of Chapter 6.
It is worthwhile to investigate ways to simplify the model to make it easier
to use. In [Pol98], for example, the stator field is derived without the effect
of the reaction field of the eddy currents in the shielding cylinder on it. In-
stead, the shielding cylinder currents are modelled as a series of equivalent
short-circuited windings, one for each space harmonic. Both methods, that of
Polinder and the one derived in this thesis, have pros and cons; a comparison
of these will certainly be an interesting and worthwhile venture.

The electrical machine

The designed machine meets the requirements of delivering high power at low loss
and having low no-load losses. Some suggestions are nevertheless made to explore
possible improvement:

• A comparison between radial and axial flux machines was not done in this
thesis. For machines with even flatter aspect ratios than the one investigated
in this thesis, or severe lack of space, an investigation of axial flux machines
will be interesting.

• Investigating the use of other materials than laminated steel as the stator yoke
material, like powdered iron, is suggested.

• Since ideal Halbach arrays are very attractive for low losses, ways to manu-
facture these should be investigated. This is in spite of the fact that they are
not suitable for machines with iron (for the geometries discussed in this thesis)
in terms of torque production. (When ironless machines are considered, their
torque production surpasses that of the other arrays [Ofo95].)

Modelling of permanent-magnet arrays

• It is recommended that more segments per pole are studied analytically in the
future, particularly because the discrete Halbach array with 2 segments per
pole is a bad approximation to the ideal Halbach array. This investigation is
particularly useful if one has machines with very low losses and ironless ma-
chines in mind.

• In this thesis, only three arrays were investigated with a fixed rectangular mag-
net shape. Other magnet shapes like trapezoids may also be investigated.
(Such an investigation has already been started in [Can03].)

Converter-machine interaction

• More work could be done on the converter-machine interaction. An analysis
of the loss distribution between machine and converter could be made to more
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accurately investigate the type of converter to be used with respect to overall
system efficiency.

• This investigation could be combined with soft-switching techniques to lower
the switching loss in the converter without increasing the induced loss in the
shielding cylinder.

• The power possibilities with a VSI are only mentioned and rudimentarily
shown in this thesis. An experimental investigation on this topic is recom-
mended.
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[Gut98] J.J. Gutt and A. Grüner. “Definition of power density as a general uti-
lization factor of electrical machines”. In European Transactions on Elec-
trical Power, volume 8, pages 305–308, July-August 1998.

[Hag29] B. Hague. Electromagnetic problems in electrical engineering. Oxford Uni-
versity Press, London, UK, 1929.

[Hal80] K. Halbach. “Design of Permanent Multipole Magnets with Oriented
Rare Earth Cobalt Material”. In Nuclear Instruments and Methods, vol-
ume 169, pages 1–10, Berkeley, USA, 1980.

[Hal85] K. Halbach. “Permanent Magnets for Production and Use of High En-
ergy Beams”. In Proceedings of the 8th International Workshop on Rare-earth
Permanent Magnets, pages 123–136, 1985.

[Ham99] K. Hameyer and R. Belmans. Numerical Modelling and Design of Electrical
Machines and Devices. WIT Press, Southampton, UK, 1999.

[Har66] H. Harrison. “Field theory applied to electrical machines”. In Interna-
tional Journal of Electrical Engineering Education, volume 193–200, 1966.

[Hau89] H.A. Haus and J.R. Melcher. Electromagnetic Fields and Energy. Prentice-
Hall, Inc., London, UK, 1989.

[Haw53] E.I. Hawthorne. “Flow of energy in DC machines”. In AIEE Transactions,
volume 72, pages 438–444, September 1953.

[Haw54] E.I. Hawthorne. “Flow of energy in synchronous machines”. In AIEE
Transactions, volume 73, pages 1–9, March 1954.

[Hea94] R.A. Headifen. “Flywheel energy storage for wind turbines”. In Con-
ference Record, 29th Intersociety Energy Conversion Engineering Conference,
volume 3, pages 1374–1379, Washington, DC, USA, 1994.

[Heb02] R. Hebner, J. Beno, and A. Walls. “Flywheel batteries come around
again”. In IEEE Spectrum, pages 46–51, April 2002.



206 BIBLIOGRAPHY

[Hei94] K.L. Heitner. “Energy storage requirements and optimization of sus-
taining power source for hybrid vehicles”. In Conference Record, 29th
Intersociety Energy Conversion Engineering Conference, volume 3, pages
1387–1392, Washington, DC, USA, 1994.

[Her98] D. Hermance and S. Sasaki. “Hybrid electric vehicles take to the
streets”. In IEEE Spectrum, November 1998.

[Hof96] H. Hofmann and S.R. Sanders. “Synchronous Reluctance Mo-
tor/Alternator for Flywheel Energy Storage Systems”. In IEEE Power
Electronics in Transportation, pages 199–206, New York, USA, 1996.

[Hor97] D.W. Scherbarth, D.T. Hackworth, T.D. Hordubay, and O.R. Christian-
son. “Design and Construction of the 4 Tesla Background Coil for the
Navy SMES Cables Test Apparatus”. In IEEE Transactions on Apllied
Superconductivity, volume 7, pages 840–843, June 1997.

[Hor99] T.D. Hordubay, O.R. Christianson, D.T. Hackworth, and D.W.
Scherbarth. “Winding of the Navy SMES Background Coil”. In IEEE
Transactions on Apllied Superconductivity, volume 9, pages 205–208, June
1999.

[Hug77] A. Hughes and T.J.E. Miller. “Analysis of Fields and Inductances in
Air-Cored and Iron-Cored Synchronous Machines”. In Proceedings of
the IEE, volume 124, pages 121–126, 1977.

[Hun95] G.L. Hunt, R.A. Sutula, and K.L. Heitner. “Energy storage requirements
and testing for hybrid electric vehicles”. In Conference Record, 30th In-
tersociety Energy Conversion Engineering Conference, volume 2, pages 97–
102, New York, NY, USA, 1995.

[Jef90] A. Jeffrey. Linear Algebra and Ordinary Differential Equations. Blackwell
Scientific Publications, Inc., Cambridge, Massachusetts, USA, 1990.

[Jon02] K. Jonasson. Analysing Hybrid Drive System Topologies. Licentiate The-
sis, Departmennt of Industrial Electrical Engineering and Automation,
Lund University, Lund, Sweden, May 2002.

[Jon03] W.D. Jones. “Hybrids to the Rescue”. In IEEE Spectrum, January 2003.

[Jou99] A. von Jouanne, P.N. Enjeti, and B. Banerjee. “Assessment of Ride-
Through Alternatives for Adjustable-Speed Drives”. In IEEE Transac-
tions on Industry Applications, volume 35, pages 908–916, July/August
1999.

[Kar01] E. Karden and R.W. De Doncker. “The non-linear low-frequency
impedance of lead/acid batteries during discharge, charge and float op-
eration”. In Conference Proceedings of the 23rd International Telcommunca-
tions Energy Conference (INTELEC 2001), pages 65–72, 2001.



BIBLIOGRAPHY 207

[Kar99] V. Karasik, K. Dixon, C. Weber, B. Batchelder, G. Campbell, and
P. Ribeiro. “SMES for Power Utility Applications: A Review of Tech-
nical and Cost Considerations”. In IEEE Transactions on Apllied Super-
conductivity, volume 9, pages 541–546, June 1999.

[Kim98a] U. Kim and D.K. Lieu. “Magnetic Field Calculation in Permanent Mag-
net Motors with Rotor Eccentricity: Without Slotting Effect”. In IEEE
Transactions on Magnetics, volume 34, pages 2243–2252, July 1998.

[Kim98b] U. Kim and D.K. Lieu. “Magnetic Field Calculation in Permanent Mag-
net Motors with Rotor Eccentricity: With Slotting Effect Considered”. In
IEEE Transactions on Magnetics, volume 34, pages 2253–2266, July 1998.

[Kol99] W. J. Kolkert and F. Jamet. “Electric Energy Gun Technology: Status of
the French-German-Netherlands Programme”. In IEEE Transactions on
Magnetics, volume 35, pages 25–30, January 1999.

[Kot93] D. Kottick, M. Blau, and D. Edelstein. “Battery energy storage for fre-
quency regulation in an island power system”. In IEEE Transactions on
Energy Conversion, volume 8, pages 455–459, September 1993.

[Kru] www.edtn.com/eexpert/akruger/akruger006.html. Passive/Active
Components and Analog Circuits.

[Kum91] B. Kumar, T.E. Gist, R.T. Fingers, and R.A. Flake. “Small Magnetic En-
ergy Storage Systems Using High Temperature Superconductors”. In
Proceedings of the 26th Intersociety Energy Conversion Engineering Confer-
ence, pages 538–543, Boston, MA, USA, 1991.

[Kun86] H.J. Künisch, K.G. Kramer, and H. Dominik. “Battery energy storage-
another option for load-frequency-control and instantaneous reserve”.
In IEEE Transactions on Energy Conversion, number 3, pages 41–46,
September 1986.

[Lam66] J. Lammeraner. Eddy Currents. Iliffe Books, London, UK, 1966.

[Lov98] H.C. Lovatt, V.S. Ramsden, and B.C. Mecrow. “Design of an in-wheel
motor for a solar-powered electric vehicle”. In IEE Proceedings on Electric
Power Applications, volume 145, pages 402–408, September 1998.

[Mag00] G. Maggetto and J. Van Mierlo. “Electric and Electric Hybrid Vehicle
Technology: A Survey”. In IEE Seminar on Electric, Hybrid and Fuel Cell
Vehicles, pages 1/1–1/11, 2000.

[Mar92] M. Marinescu and N. Marinescu. “New Concept for Permanent Magnet
Excitation for Electrical Machines. Analytical and Numerical Computa-
tion”. In IEEE Transactions on Magnetics, volume 28, pages 1390–1393,
1992.



208 BIBLIOGRAPHY

[Mar99] Marmara Research Center. “Magneto Dynamic Storage Systems”.
Progress Report 1 (Draft), Turkish Scientific & Technical Research Coun-
cil, 1999.

[Mat87] L. W. Matsch and J. D. Morgan. Electromagnetic and Electromechanical
Machines. John Wiley & Sons, Inc., New York, USA, 3 edition, 1987.

[McL55] N. W. McLachlan. Bessel functions for engineers. Oxford University Press,
London, 1955.

[Mec03] B.C. Mecrow, A.G. Jack, D.J. Atkinson, S. Green, and G.J. Atkinson. “De-
sign and Testing of a 4 Phase Fault Tolerant Permanent Magnet Machine
for an Engine Fuel Pump”. In Conference Proceedings, IEEE International
Electric Machines and Drives Conference, volume 2, pages 1301–1307, June
2003.

[Mil96] N.W. Miller, R.S. Zrebiec, R.W. Delmerico, and G. Hunt. “Design and
commissioning of a 5 MVA, 2.5 MWh battery energy storage system”. In
Conference Record, IEEE Power Engineering Society Transmission and Dis-
tribution Conference, New York, NY, USA, 1996.

[Mil97] J.F. Miller, C.E. Webster, A.F. Tummillo, and W.H. DeLuca. “Testing and
evaluation of batteries for a fuel cell powered hybrid bus”. In Confer-
ence Record, 32nd Intersociety Energy Conversion Engineering Conference,
volume 2, pages 894–898, New York, NY, USA, 1997.

[Moh95] N. Mohan, T.M. Undeland, and W.P Robbins. Power Electronics: Convert-
ers, Applications and Design. John Wiley & Sons, Inc., New York, USA,
2nd edition, 1995.

[Moo99] T. Moore. “Powering Up Superconducting Cable”. In EPRI Journal,
pages 8–15, Spring 1999.

[Mos98a] H. Mosebach. “Einfache analytische Rechenmodelle für permanent-
magneterregte Synchronmachinen”. In Electrical Engineering, vol-
ume 81, pages 171–176. Springer-Verlag, 1998.

[Mos98b] H. Mosebach. “Direct Two-Dimensional Analytical Thrust Calculation
of Permanent Magnet Excited Linear Synchronous Machines”. In Con-
ference Record, 2nd International Symposium on Linear Drives for Industry
Applications, pages 396–399, Tokyo, Japan, April 1998. IEE, Japan.

[Mos98c] H. Mosebach and W.-R. Canders. “Average Thrust of Permanent Mag-
net Excited Linear Synchronous Motors for Different Stator Current
Waveforms”. In Conference Record, International Conference on Electrical
Machines (ICEM ’98), Istanbul, Turkey, September 1998.



BIBLIOGRAPHY 209

[Nel01] R. Nelson. “The Basic Chemistry of Gas Recombination in Lead-Acid
Batteries”. In JOM: The Member Journal of The Minerals, Metals & Materi-
als Society, volume 35, pages 28–33, 2001.

[Nel96] R.J. Nelson, J.R. Legro, G.T. Gurlaskie, N.H. Woodley, M. Sarkozi, and
A. Sundaram. “Voltage sag relief: guidelines to estimate DVR equip-
ment ratings”. In Proceedings of the 58th Annual American Power Confer-
ence., volume 2, 1996.

[Nel97a] B. Nelson. “TMF Ultra-High Rate Discharge Performance Going Boldly
Where No Batteries Have Gone Before”. In Proceedings of the 12th Annual
Battery Conference on Applications and Advances, pages 139–143, Long
Beach, CA, USA, 1997.

[Nel97b] R. F. Nelson, R. Rinehart, and S. Varley. “Ultrafast Pulse Discharge and
Recharge Capabilities of Thin Metal Film Battery Technology”. In Pro-
ceedings of the 11th IEEE International Pulsed Power Conference, pages 636–
641, Baltimore, MD, USA, 1997.

[Ng96] K. Ng, Z.Q. Zhu, and D. Howe. “Open-Circuit Field Distribution in a
Brushless Motor with Diametrically Magnetized PM Rotor, Accounting
for Slotting and Eddy Current Effects”. In IEEE Transactions on Magnet-
ics, volume 32, pages 5070–5072, September 1996.

[Ofo95] J. Ofori-Tenkorang and J.H. Lang. “A Comparative Analysis of Torque
Production in Halbach and Conventional Surface-Mounted Permanent-
Magnet Synchronous Motors”. In Conference Record, 30th IEEE Industry
Applications Society Conference, volume 3, pages 657–663, 1995.

[Oh99] S.J. Oh and M.D. Driga. “Fast discharging inertial energy storage sys-
tems for industry applications: electromagnetic considerations”. In
Conference Record, 12th IEEE International Pulsed Power Conference, pages
1283–1286, Monterey, California, USA, 1999.

[Owe99] S. Oweis. “The Li-ion Technology at SAFT for High Energy and High
Power Applications”. In Proceedings of the 3rd International AECV Con-
ference, Maritim Hotel, Königswinter, 21–23 September 1999.

[Pal80a] B.B. Palit. “Unified analysis of electrical machines with the help of
Poynting vector and the electromagnetic energy flow in the air-gap
space: Part I: General theory”. In Zeitschrift für angewandte Mathematik
und Physik, volume 31, pages 384–399, 1980.

[Pal80b] B.B. Palit. “Unified analysis of electrical machines with the help of
Poynting vector and the electromagnetic energy flow in the air-gap
space: Part II: Application of general theory”. In Zeitschrift für ange-
wandte Mathematik und Physik, volume 31, pages 400–412, 1980.



210 BIBLIOGRAPHY

[Pal82] B.B. Palit. “On active and reactive power flow in electrical machines: a
unified analysis”. volume 19, pages 67–78, January 1982.

[Pel99] W. G. Pell, B. E. Conway, W. A. Adams, and J. de Oliveira. “Electro-
chemical Eficiency in Multiple Discharge Recharge Cycling of Superca-
pacitors in Hybrid EV Applications”. In Journal of Power Sources, vol-
ume 80, pages 134–141, 1999.

[Pil95] P. Pillay, R. M. Samudio, M. A. Ahmed, and R. T. Patel. “A Chopper-
Controlled SRM Drive for Reduced Acoustic Noise and Improved Ride-
Through Capability Using Supercapacitors”. In IEEE Transactions on
Industry Applications, volume 31, pages 1029–1038, September/October
1995.

[Pol71] M. Poloujadoff and R. Perret. “Study of an induction machine by the
method of Poynting vector”. In Revue Générale de l’Electricité, volume 80,
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APPENDIX A

Winding factors

A.1 Introduction

Winding factors have become the method of choice to represent windings mathemat-
ically as is evident from literature. Several ways of introducing the winding factors
have been introduced over the years. In [Sle92] it is the ratio of the mmf of a physical
winding distribution to that of a concentrated one. In [Ric67] the ratio is between
the flux linked of these two types of windings, and some other authors introduce the
ratio as the one between the surface current densities of the two winding types. In
[Pol98], the winding factor is directly the ratio of the equivalent number of turns of
a space harmonic of a physical winding to that of a concentrated winding. In what-
ever way the winding factors are introduced, they have the same meaning since the
physical quantity from which they are derived (i.e. the mmf [Sle92], the flux link-
age [Ric67], or the surface current density of the stator), disappears in the derivation
and only the equivalent number of turns is left. It is for this reason that the winding
factors are simply a tool to simplify the Fourier-series representation of a physical
winding distribution.

Due to this fact, winding factors may also be used in air gap windings. They
have been used in multilayer air gap windings by several researchers: [Ata98], [Sri95]
and [Che97], of which [Ata98] and [Sri95] include experimental validation.

A.2 The different winding factors

There are four different winding factors commonly used today. They are the:

• Distribution factor kw,dist,k: this factor modifies the Fourier coefficient of the
winding distribution for the case where the winding is distributed over several
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slots instead of concentrated in an infinitesimal slot. It is given by:

kw,dist,k =
sin

(
kπ
2m

)

q sin
(

kπ
2mq

) , (A.1)

• Pitch factor kw,pitch,k: this factor accounts for the short pitching of the winding,
i.e. where the return conductors are located at less than a pole pitch from the
go conductors. This factor is written as:

kw,pitch,k = cos
(

1
2 kpϕpitch

)
, (A.2)

if the stator winding is short pitched from π/p to π/p − ϕpitch radians.

• Slot factor kw,slot,k: this factor further modifies the Fourier coefficient because of
the slotting of the winding (the physical slot width). The slot factor is expressed
as:

kw,slot,k =
sin

(
1
2 kpϕso

)

1
2 kpϕso

, (A.3)

where ϕso is the slot-opening angle.

• Skew factor: kw,skew,k: when the stator is skewed with respect to the rotor, usu-
ally to reduce or eliminate cogging torque, this factor takes that into account.
The skew factor is identical in expression to the slot factor:

kw,skew,k =
sin

(
1
2 kpϕskew

)

1
2 kpϕskew

, (A.4)

where ϕskew is the skew angle.

The winding factor is the product of the four different winding factors (A.1)–
(A.4) above:

kw,k = kw,dist,k kw,pitch,k kw,slot,k kw,skew,k. (A.5)

A.3 Fourier analysis of a winding distribution

A.3.1 Introduction

To show that the winding factor approach is a simple way of avoiding a direct
Fourier analysis of the distribution of the winding, this section will develop a Fourier-
series expression for the EµFER machine’s winding distribution by both approaches.
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A.3.2 The EµFER machine’s winding distribution

The 1-2-2-1 winding of the EµFER machine is shown in Figure 3.8. In this section
the winding distribution is shifted 4.5 slots to the right in order to show that also
a sine distribution is easily handled with winding factors. In the thesis, a cosine
distribution is used so that the triplen- and non-triplen space harmonics can easily
be separated as in (3.16a).

The EµFER machine’s winding distribution, shifted by 4.5 slots to the right, is
shown in Figure A.1. In Figure A.1(a), the number of conductors in each of the 36
slots is shown, while Figure A.1(b) shows the number of conductors per radian in
the slots, i.e. Figure A.1(a) divided by ϕso.

A.3.3 Fourier analysis by means of the winding factors

The winding factor kw,k in (A.5) above, when multiplied with 4/π, relates the real
(physical) number of turns of a winding N to the equivalent (mathematical) number
of turns of the k-th space harmonic Ns,k. This is derived in [Sle92] and is written as:

Ns,k = 4
π kw,k N ×

{
sin

(
1
2 kπ

)
for a sine series,

1 for a cosine series.
(A.6)

From (A.6), one sees that usually either a sine series or a cosine series is used.
The origin of the winding distribution is thus chosen to make the Fourier series either
one or the other. Choosing the origin such that both terms are required unnecessarily
complicates the analysis. In this appendix, an example is done with a sine-series
representation of the EµFER machine’s winding distribution, while in the rest of the
thesis, the cosine representation is used. These are completely equivalent, since only
a physical rotation of π/2p is required to obtain the one from the other.

The Fourier coefficient n̂s,k is half the number of turns of the k-th space harmonic
Ns,k of (A.6), or:

n̂s,k = 1
2 Ns,k. (A.7)

Making use of this Fourier coefficient, the Fourier-series representation of the wind-
ing distribution nsa is written as either:

nsa(ϕ) =
∞

∑
k=1,3,5,···

n̂s,k sin(kpϕ), (A.8)

for a sine series, or:

nsa(ϕ) =
∞

∑
k=1,3,5,···

n̂s,k cos(kpϕ), (A.9)

for a cosine series.
For the EµFER machine’s winding distribution, the following parameters were

listed in Chapter 3:
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Figure A.1: The 1-2-2-1 winding of the EµFER machine shifted 4.5 slots to the right; (a)

number of conductors; (b) number of conductors per radian.

• number of phases: m = 3;

• number of pole pairs: p = 2;

• number of slots per pole per phase: q = 3;

• number of slots: s = 2mpq = 36;

• slot-opening angle: ϕso = 0.8(π/18);

• pitch angle: ϕpitch = π/18; and

• 1 conductor per slot per layer

These are substituted into (A.1), (A.2), (A.3), (A.5), (A.6), (A.7), and (A.8) to obtain
a Fourier series representation of the winding distribution. Note that for the EµFER
machine, there is no skew factor.

A.3.4 Direct Fourier analysis

In [Jef90], a formal derivation of a trigonometric Fourier series is done, as in many
other mathematical texts. This results in the representation of a periodic function f
on an interval [a, b] as:

f (ϕ) =
1

2
a0 +

∞

∑
k=1

[
ak cos

(
2kπϕ

b − a

)
+ bk sin

(
2kπϕ

b − a

)]
; a ≤ ϕ ≤ b, (A.10)
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where

ak =
2

b − a

b∫

a

f (ϕ) cos

(
2kπϕ

b − a

)
dϕ; k = 0, 1, 2, · · · (A.11)

and

bk =
2

b − a

b∫

a

f (ϕ) sin

(
2kπϕ

b − a

)
dϕ; k = 1, 2, 3, · · · (A.12)

Recognizing by inspection that ak = 0 for all k when a sine series is used as in
(A.8) and Figure A.1, and choosing the periodic interval as [a, b] = [0, π], the formula
for bk becomes from (A.12):

bk =
2

π

π∫

0

f (ϕ) sin (2kϕ) dϕ. (A.13)

From Figure A.1(b), equation (A.13) becomes:

bk =
2

πϕso





3π
18 +

ϕso
2∫

3π
18 − ϕso

2

sin (2kϕ) dϕ +

4π
18 +

ϕso
2∫

4π
18 − ϕso

2

2 sin (2kϕ) dϕ +

5π
18 +

ϕso
2∫

5π
18 − ϕso

2

2 sin (2kϕ) dϕ

+

6π
18 +

ϕso
2∫

6π
18 − ϕso

2

sin (2kϕ) dϕ −

12π
18 +

ϕso
2∫

12π
18 − ϕso

2

sin (2kϕ) dϕ −

13π
18 +

ϕso
2∫

13π
18 − ϕso

2

2 sin (2kϕ) dϕ

−

14π
18 +

ϕso
2∫

14π
18 − ϕso

2

2 sin (2kϕ) dϕ −

15π
18 +

ϕso
2∫

15π
18 − ϕso

2

sin (2kϕ) dϕ




. (A.14)

The distance from the centre of one slot to the next is recognized to be 2π/s = π/18.
Equation (A.14) is worked out as:

bk =
2

π

sin(kϕso)

kϕso

[
sin

(
3

9
kπ

)
+ 2 sin

(
4

9
kπ

)
+ 2 sin

(
5

9
kπ

)
+ sin

(
6

9
kπ

)

− sin

(
12

9
kπ

)
− 2 sin

(
13

9
kπ

)
− 2 sin

(
14

9
kπ

)
− sin

(
15

9
kπ

)]
. (A.15)

The slot factor (A.3) is clearly seen in (A.15), while the distribution and pitch factors
are contained in the 8 terms in brackets.

The winding distribution for phase a is therefore written from (A.10) as:

nsa,d(ϕ) =
∞

∑
k=1

bk sin (2kϕ) , (A.16)
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where the Fourier coefficient bk is given by (A.15) and the subscript d indicates that
the expression comes from a direct Fourier analysis. Since the terms in (A.16) are
zero for k = 2, 4, 6, · · · , only uneven k may be used:

nsa,d(ϕ) =
∞

∑
k=1,3,5,···

bk sin (2kϕ) . (A.17)

A.4 Results and comparison

The two approaches to obtain the winding distribution, i.e. the winding factor ap-
proach and the direct Fourier analysis approach, resulted in equations (A.8) and
(A.17). These functions are plotted in Figure A.2. The function nsa,d(ϕ) of the Fourier
series approach was multiplied by 0.95 so that the graphs can easily compared. Both
functions were calculated up to a maximum of k = 301 space harmonics. Figure A.2
proves that both approaches led to the same result for the winding distribution.

Both functions nsa(ϕ) and nsa,d(ϕ) can be converted into a cosine series by sub-

stituting ϕ + π
2p for ϕ, since cos(kpϕ) = sin

[
kp

(
ϕ + π

2p

)]
. One thus sees that to

change a sine into a cosine representation is simple with both methods.
When the number of poles (or any other parameter for that matter) changes,

however, the winding factor approach immediately produces the correct Fourier se-
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Figure A.2: The winding distribution nsa(ϕ) and nsa,d(ϕ) as calculated by (A.8) and

(A.17). The function nsa,d(ϕ) from the direct Fourier analysis approach

was multiplied by 0.95 so that both can easily be compared.
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ries by changing the appropriate winding factors, while the direct Fourier-analysis
approach requires a completely new calculation.

A.5 The current density

Figure A.3(a) shows the winding distribution of all three phases as used in the rest
of the thesis, i.e. a cosine distribution calculated by (A.9) for phase a.

From the three-phase winding distribution of Figure A.3(a), the total current
density can be obtained. It is given by (6.1) as the winding distribution times the
stator current, divided by the winding height and winding centre radius. In space
and time harmonic form with both the winding distribution and the current written
as cosine functions, this results in the following expression for phase a:

Jsa,k,n(ϕ, t) =
n̂s,k îs,n

hwrwc
cos(kpϕ) cos(nωst). (A.18)

The current density of phase a is the sum of (A.18) over space and time harmonics k
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and n:

Jsa(ϕ, t) =
∞

∑
k=1,3,5,···

∞

∑
n=1,3,5,···

Jsa,k,n(ϕ, t). (A.19)

For phases b and c, similar expressions are used with the appropriate phase shifts.
The total current density is given by

Js(ϕ, t) = Jsa(ϕ, t) + Jsb(ϕ, t) + Jsc(ϕ, t). (A.20)

The total current density is shown in Figure A.3(b) at t such that isa = 300 A, isb =

isc = −150 A.
This situation is a balanced three-phase condition. For such balanced three-

phase stator currents, the triplen harmonics are zero, as shown in Chapter 6. The
k-th space and n-th time harmonic of the total current density is thus in travelling-
wave form:

Js,k,n(ϕ, t) =
3

2
Jsa,k,n(ϕ, t) =

3

2

n̂s,k îs,n

hwrwc
cos(kpϕ − nωst); k, n = 1, 5, 7, 11, · · ·

(A.21)
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Maxwell’s equations and the Theorem of Poynting

B.1 Introduction

This appendix documents the electromagnetic background of the thesis. Firstly, the
equations of Maxwell are listed in Section B.1 and then simplified to the magneto-
quasistatic approximation for stationary media in the time domain in Section B.2.

Section B.3 simplifies the Maxwell equations for the magnetoquasistatic approx-
imation, which is the approximation used throughout this thesis.

The Theorem of Poynting is the topic of Section B.4. It is listed in local and
integral forms in the time domain for stationary matter.

In Section B.5, things start moving. This section uses results from the theory of
special relativity to arrive at Maxwell’s equations for matter moving with constant
rotational velocity.

Section B.6 combines results of Sections B.4 and B.5 to obtain the Theorem of
Poynting for moving matter; once again for constant rotational velocity. It is shown
that the Poynting vector in rotor coordinates (R-system) only calculates dissipated
power while in stator coordinates (L-system), both mechanical and dissipated com-
ponents are present.

Section B.7 applies the results obtained to the electrical machine discussed in
this thesis.

B.2 Maxwell’s equations in stationary matter

The equations of Maxwell in stationary matter are:

−∇× H + ε0
∂E

∂t
= −Jmat, (B.1a)

223
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and

∇× E + µ0
∂H

∂t
= −Kmat, (B.1b)

where the current and surface current densities in the matter are given by:

Jmat = Jind + Jext, (B.2a)

and
Kmat = Kind + Kext. (B.2b)

Furthermore, the induced current and surface current densities are:

Jind = J +
∂P

∂t
, (B.3a)

where P is the polarization and

Kind = µ0
∂M

∂t
, (B.3b)

where M is the magnetization of the matter.
With the flux densities:

D = ε0E + P, (B.4a)

and
B = µ0(H + M), (B.4b)

equations (B.1a) and (B.1b) result in Maxwell’s equations in matter:

−∇× H + J +
∂D

∂t
= −Jext, (B.5a)

and

∇× E +
∂B

∂t
= −Kext. (B.5b)

These are supplemented by the constitutive relations for an instantaneous medium:

J(x, t) = σ(x)E(x, t), (B.6a)

D(x, t) = ε(x)E(x, t), (B.6b)

and
B(x, t) = µ(x)H(x, t). (B.6c)

Also, by taking the divergence of (B.5a) and (B.5b) we have the compatibility
equations:

∇ · J +
∂

∂t

(
∇ · D

)
= −∇ · Jext, (B.7a)

and
∂

∂t

(
∇ · B

)
= −∇ · Kext. (B.7b)
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Combination of (B.5) and (B.6) results in the electromagnetic field equation:

−∇× H + σE + ε
∂E

∂t
= −Jext, (B.8a)

and

∇× E + µ
∂H

∂t
= −Kext. (B.8b)

B.3 The magnetoquasistatic approximation

The magnetoquasistatic approximation (MQS), used throughout this thesis, is ob-
tained from (B.5) by setting ∂D

∂t and Kext to zero. The field equation for the MQS
approximation is:

−∇× H + J = −Jext, (B.9a)

∇× E +
∂B

∂t
= 0, (B.9b)

∇ · Jext = 0, (B.9c)

and

∇ · B = 0, (B.9d)

The static part is given by (B.9a) and the dynamic part by (B.9b).
The constitutive relations for a linear isotropic medium are:

J = σE, (B.10a)

and

B = µ0H + µ0M. (B.10b)

The magnetization M consists of two parts: a temporary part and a permanent part,
or:

M = Mt + Mp. (B.11)

This fact transforms (B.10b) into:

B = µ0H + µ0Mt + µ0Mp

= µH + µ0Mp

= µH + Brem,

(B.12)

where the remanent flux density of the magnets has been introduced as:

Brem ≡ µ0Mp. (B.13)

Furthermore, by taking the divergence of (B.9a) and by use of (B.9c), we have:

∇ · J = 0. (B.14)
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B.4 The Theorem of Poynting

B.4.1 Local form in the time domain

In local form, the Theorem of Poynting in the time domain is written1 as [Blo99]:

∇ · S + H · ∂tB + J · E = −E · Jext, (B.15)

where S is the Poynting vector:
S ≡ H × H. (B.16)

By use of the constitutive relations (B.10a) and (B.12), this becomes:

∇ · S + ∂t

(
1
2 µH · H

)
+ H · ∂tBrem + σE · E = −E · Jext, (B.17)

which can be rewritten as:

psource + ∂twm + pmech + pdiss = pext, (B.18)

by introducing the source power density psource [W/m3], the energy density in the
magnetic field wm [J/m3], the mechanical power density pmech [W/m3], the dissi-
pated power density pdiss [W/m3] and the external power density pext [W/m3].

B.4.2 Integral form in the time domain

The integral form in the time domain can be written from (B.17) as:

∮

S

S · da + ∂t

∫

V

(
1
2 µH · H

)
dv +

∫

V

H · ∂tBrem dv +

∫

V

σE · E dv = −
∫

V

E · Jext dv,

(B.19)
where the closed surface S encloses volume V, i.e. S = ∂V. Equation (B.19) can be
rewritten as:

Psource + ∂tWm + Pmech + Pdiss = −Pext (B.20)

The power Pext is the power that passes through the surface S.

B.5 Maxwell’s equations in moving matter

B.5.1 Constant rotational velocity

When a body is moving at a constant velocity, results from the theory of special rela-
tivity can be used [Blo75]. Strictly speaking, rotating bodies with constant rotational
velocities do not have a constant velocity because of the direction change. When
the corresponding circumferential speeds are low compared to the speed of light,

1The notation ∂t is shorthand for ∂
∂t .
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however, one may use the results of the theory of special relativity without getting
too large an error. In the case of the machine discussed in this thesis, the ratio of
the circumferential speed at the magnet radius to the speed of light in vacuum is
vc/c0 ≈ 1 × 10−6; c0 = (ε0µ0)

−1/2, giving confidence in the validity of the method.
Van Bladel [Bla73] and Shiozawa [Shi73] addressed the issue of electromagnetic

field equations for rotating media. Following the discussion in [Shi73], consider the
two reference frames of Figure B.1. Reference frame R rotates with constant angular
speed ωm around the Z-axis while reference frame L is in rest; its Z-axis is parallel to
that of reference frame R. The coordinates of the R-frame is indicated with primes:
(x′, y′, z′, t′), and that of the L-frame without it: (x, y, z, t); t is the time “coordinate”.
The R-frame is the “rest” frame with respect to the rotating matter; it thus rotates
with it. The L stands for “laboratory”.

For circumferential speeds that are low with respect to the speed of light in
vacuum, the Galilei transformations may be used:

x′ = x cos ωmt + y sin ωmt

y′ = −x sin ωmt + y cos ωmt

z′ = z

t′ = t

(B.21)

y’

y

x’
x

L
R

wmt

wm

z’z

Figure B.1: Rotational reference frames; the R-system is in rest w.r.t. the moving mat-

ter and the L-system observes the matter as rotating at constant rotational

velocity around the Z-axis. The R-system corresponds to the rotor and the

L-system to the stator.
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B.5.2 The field equations

The first postulate of special relativity is that the field equations has the same form
in both reference frames. The MQS field equation in the R-system is:

−∇′ × H′ + J′ = −J′ext, (B.22a)

∇′ × E′ +
∂B′

∂t′
= 0′, (B.22b)

∇′ · D′ = ρ′, (B.22c)

∇′ · B′ = 0′. (B.22d)

where ρ′ is the charge density. In the L-system it is:

−∇× H + J = −Jext, (B.23a)

∇× E +
∂B

∂t
= 0, (B.23b)

∇ · D = ρ, (B.23c)

∇ · B = 0. (B.23d)

B.5.3 Transformation equations

For the Galilei transformations (B.21), the transformation equations for the field
quantities are:

E′ = E + vc × B; B′ = B −
(

1
c0

)
vc × E; (B.24a)

H′ = H − vc × D; D′ = D +
(

1
c0

)
vc × H; (B.24b)

J′ = J − ρvc; ρ′ = ρ −
(

1
c0

)
vc · J. (B.24c)

B.5.4 The constitutive relations

As already mentioned, the field equations stay the same in both systems. The effect
of the movement is seen in the constitutive relations, however.

In the R-system

The constitutive relations must be written in the R-system since for linear isotropic
media, the material properties must be measured in the system that is in rest w.r.t.
the matter [Blo75]. The constitutive relations in the R-system are:

D′ = εE′; B′ = µH′ + Brem; J′ = σE′. (B.25)
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In the L-system

To obtain the constitutive relations in the L-system, equation (B.24) is substituted
into (B.25), the constitutive relations in the R-system. One then obtains after manip-
ulation and making use of the fact that c0 = (ε0µ0)

−1/2:

D = εE + (εµ − ε0µ0)vc × H; (B.26a)

B = µH − (εµ − ε0µ0)vc × E + Brem; (B.26b)

J = σE + σµvc × H. (B.26c)

B.6 The Theorem of Poynting for moving matter

B.6.1 Local form in the time domain: R-system

Equation (B.17) for stationary media can be written exactly as it is in the R-system
since this system is in rest w.r.t. the matter:

∇ · S′ + H′ · ∂′tB
′ + J′ · E′ = −E′ · J′ext. (B.27)

The external current density is zero in our case. By use of the constitutive relations
(B.25), this becomes:

−∇ · S′ = ∂′t
(

1
2 µH′ · H′

)
+ H′ · ∂′tBrem + σE′ · E′, (B.28)

which can be rewritten as:

p′source = ∂′tw
′
m + p′mech + p′diss. (B.29)

The power density p′mech is the power density delivered to the permanent magnets.
In the R-system this term is zero since the remanence does not change with time in
this system; i.e.:

p′source = ∂′tw
′
m + p′diss. (B.30)

In time-averaged form, this is:

〈p′source〉 = 〈p′diss〉. (B.31)

B.6.2 Local form in the time domain: L-system

Following the first postulate of the theory of special relativity, the Theorem of Poyn-
ting has the same form in the L-system as in the R-system. Thus:

∇ · S + H · ∂tB + J · E = −E · Jext. (B.32)
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By use of the constitutive relations (B.26), this becomes:

∇ · S + ∂t

(
1
2 µH · H

)
− H · ∂t

[
(εµ − ε0µ0)vc × E

]
+ H · ∂tBrem

+ σE · E + (σµvc × H) · E = −E · Jext. (B.33)

In the analytical model of this thesis, all non-iron regions are assumed to have a
permittivity and permeability that is equal to that of free space. This makes the third
term equal to zero. Once again, as in the R-system, the external current density is
zero. Equation (B.33) now becomes:

−∇ · S = ∂t

(
1
2 µH · H

)
+ H · ∂tBrem + σE · E + (σµvc × H) · E. (B.34)

B.6.3 Interpretation

The interpretation of Poynting’s Theorem in the L-system, equation (B.34), is more
complicated than in the R-system of equation (B.28).

Firstly, ∂tBrem is nonzero in the L-system, suggesting that power is delivered
to the rotating magnets. The other two time-averaged power components represent
power delivered to the shielding cylinder. In total, three different time-averaged
power components are therefore present, as suggested by (B.34):

1. Mechanical power delivered to the rotating permanent magnets;

2. Dissipation power delivered to the shielding cylinder; and

3. Mechanical power delivered to the shielding cylinder.

In Chapter 6 it was shown that the shielding cylinder only allows the magnetic field
to penetrate through it for equal space and time harmonics. The power components
corresponding to equal space and time harmonics thus form power component #1:
the mechanical power delivered to the rotating permanent magnets.

For nonequal space and time harmonics, a combination of components #2 and
#3 listed above is present. To distinguish between these, the rotor slip is needed.
This is introduced in Chapter 7, where these power components are also calculated.
For the purposes of this section, we conclude with writing equation (B.34) as:

psource = ∂twm + pmech + psc,diss + psc,mech, (B.35)

which is in time-averaged form:

〈psource〉 = 〈pmech〉 + 〈psc,diss〉 + 〈psc,mech〉. (B.36)

B.6.4 Frequency-domain forms

Definition of the complex Poynting vector

The field equations in the frequency domain may be obtained from the time-domain
form of the field equations by subjecting them to a Laplace transform on the interval
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{t ∈ R, t > 0}. The steady-state analysis for time-harmonic sources (which is used
throughout this thesis) may be considered as a limiting case of Laplace-transform
analysis, where s → jω.

In the frequency domain we then have complex vectors, indicated by a bar
above the symbol; for example, for the electric field vector: Ē. A hat above the sym-

bol is needed since it is the peak value of the time-harmonic form: ˆ̄E. To transform
back to the time domain, we write:

E(r, φ, t) ≡ Re
{

ˆ̄E(r, φ, jω)ejωt
}

. (B.37)

Furthermore, it should be noted that the real-valued vector E can be written in
terms of ˆ̄E and its complex conjugate ˆ̄E∗ as:

E = Re
{

ˆ̄Eejωt
}

= 1
2

(
ˆ̄Eejωt + ˆ̄E∗e−jωt

)
. (B.38)

Making use of this fact, the cross product of E and H may now be taken:

S = E × H = 1
2

(
ˆ̄Eejωt + ˆ̄E∗e−jωt

)
× 1

2

(
ˆ̄Hejωt + ˆ̄H∗e−jωt

)

= 1
4

(
ˆ̄E × ˆ̄H∗ + ˆ̄E∗ × ˆ̄H

)
+ 1

4

(
ˆ̄E × ˆ̄Hej2ωt + ˆ̄E∗ × ˆ̄H∗e−j2ωt

)

= 1
2 Re

{
ˆ̄E × ˆ̄H∗

}
+ 1

2 Re
{

ˆ̄E × ˆ̄Hej2ωt
}

.

(B.39)

The first term of (B.39) is time independent and represents the average value of
Poynting’s vector over a cycle. The second term is a sinusoidal vector with frequency
2ω, and its components cancel out if E×H is a vector of constant length rotating with
velocity ω [Fan60].

Following the reasoning above, the complex Poynting vector is defined as:

ˆ̄S ≡ 1
2

( ˆ̄E × ˆ̄H∗) [W/m2]. (B.40)

Local form in the frequency domain: R-system

The local form of Poynting’s Theorem in the frequency domain in the R-system is:

−∇ ·
( ˆ̄E′ × ˆ̄H′∗) = jωµ ˆ̄H′ · ˆ̄H′∗ + σ ˆ̄E′ · ˆ̄E′∗. (B.41)

From this, the conservation of energy can be written as:

−Re
{
∇ · ˆ̄S′

}
= 1

2 Re
{

σ ˆ̄E′ · ˆ̄E′∗
}

. (B.42)

Local form in the frequency domain: L-system

In the L-system, the local form of Poynting’s Theorem in the frequency domain is:

−∇ ·
( ˆ̄E × ˆ̄H∗) = jωµ ˆ̄H · ˆ̄H∗ + ˆ̄H · jωBrem + σ ˆ̄E · ˆ̄E∗ + (σµvc × ˆ̄H) · ˆ̄E∗. (B.43)
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From this, the conservation of energy can be written as:

−Re
{
∇ · ˆ̄S

}
= 1

2 Re
{

ˆ̄H · jωBrem

}
+ 1

2 Re
{

σ ˆ̄E · ˆ̄E∗
}

+ 1
2 Re

{
(σµvc × ˆ̄H) · ˆ̄E∗

}
.

(B.44)

Integral form in the frequency domain: R-system

The final step is to integrate (B.41) over an appropriately chosen volume V to obtain
the integral form in the frequency domain in the R-system. In fact, the conservation
of energy, equation (B.42) may rather be used because of its physical significance.
One obtains:

−Re






∮

S

ˆ̄S′ · da




 = 1
2 Re






∫

V

σ ˆ̄E′ · ˆ̄E′∗ dv




 , (B.45)

where S is the bounding surface of V, i.e. S = ∂V.

Integral form in the frequency domain: L-system

The volume integral of the conservation of energy (B.44) in the L-system is:
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
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B.7 Application of the theory to the electrical machine

B.7.1 What is calculated in the thesis?

In the thesis, the average air gap power, or average source power 〈Psource〉, is cal-

culated. This is done by finding the complex Poynting vector ˆ̄S and performing a
closed surface integral on it; this is documented in Section 4.6. This air gap power is
the power that flows from the stator to the rotor. The calculation is done for the case
where the rotor rotates and where it is locked.

In other words, in the thesis, the left-hand sides of equations (B.45) and (B.46)
are calculated. The purpose of this appendix is to provide clues to the interpretation
of the already obtained air gap power. The right-hand sides of equations (B.42) and
(B.44) are thus never calculated, only interpreted. The interpretation is a combination
of what is derived in this appendix as well as clues from the space and time harmonic
information obtained from the left-hand sides.
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B.7.2 A freely rotating rotor

In the R-system, i.e. in rotor coordinates, we have therefore:

〈P′
source〉 = 〈P′

diss,sc〉, (B.47)

meaning that the average air gap power is the power dissipated in the shielding
cylinder. This happens only for nonequal space and time harmonics. For equal space
and time harmonics, in rotor coordinates, the air gap power is zero.

In the L-system, i.e. in stator coordinates, we have therefore:

〈Psource〉 = 〈Pmech〉 + 〈Pdiss,sc〉 + 〈Pmech,sc〉. (B.48)

As in (B.47), the power terms in (B.48) are interpreted depending on the combination
of space and time harmonics. Average mechanical power is only transferred when
they are equal; for the other cases it is zero. For nonequal space and time harmonics,
power is transferred to the shielding cylinder instead of to the permanent magnets.
To find the part of this power that is dissipated, and which part is mechanical, the
rotor slip needs to be introduced; this is done in Chapter 7.

B.7.3 A locked rotor

In Chapter 6, the locked-rotor machine impedance is calculated. This is done directly
from the air gap power of (B.47), since the L-system is used when the rotor stands
still. (At standstill, the R- and L-systems are the same.)

In terms of the circuit quantities voltage and current, the active and reactive
source power can be written as:

〈Psource〉 + jQsource = 1
2

ˆ̄v ˆ̄i∗, (B.49)

where ˆ̄v and ˆ̄i are the peak values of an equivalent voltage and current.
The complex impedance is defined by Ohm’s Law as:

ˆ̄v = Z̄ ˆ̄i∗, (B.50)

which suggests dividing (B.49) by | ˆ̄i|2/2, leading to:

Z̄ =
ˆ̄v ˆ̄i∗

| ˆ̄i|2
=

2

| ˆ̄i|2
[
〈Psource〉 + jQsource

]
. (B.51)

The resistance is calculated by substituting (B.47) into the real part of (B.51):

R = Re
{

Z̄
}

=
2〈Pdiss,sc〉

| ˆ̄i|2
. (B.52)
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APPENDIX C

A brief overview of Bessel functions

The modified Bessel functions are described in detail in many texts on differential
equations, like [Jef90]. McLachlan wrote a book [McL55] entirely devoted to the
subject of Bessel functions with the emphasis on practical problem solving.

As a very brief overview, there are four basic Bessel functions. They are gener-
ally defined for non-integral order γ. For integral order k, the definitions are slightly
different. The four Bessel functions are:

• Jγ(x): Bessel function of the first kind of non-integral order γ:

Jγ(x) = xγ
∞

∑
m=0

(−1)mx2m

22m+γ m! Γ(m + 1 + γ)
, (C.1)

where Γ is the Gamma function (factorial function), defined as:

Γ(x) =

∞∫

0

e−ttx−1dt; x > 0. (C.2)

Although Γ(x) is defined for positive x it may be extended to negative x. For
negative integers, Γ(x) is infinity and for negative rational numbers, Γ(x) may
be determined from the property xΓ(x) = Γ(x + 1).

• Jk(x): Bessel function of the first kind of integral order k:

Jk(x) = xk
∞

∑
m=0

(−1)mx2m

22m+k m!(m + k)!
; k = 0, 1, 2, · · · (C.3)

• Yγ(x): Bessel function of the second kind of non-integral order γ:

Yγ(x) =
Jγ(x) cos(γπ) − J−γ(x)

sin(γπ)
(C.4)
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• Yk(x): Bessel function of the second kind of integral order k:

Yk(x) = lim
γ→k

Yγ(x) (C.5)

• Iγ(x): Modified Bessel function of the first kind of non-integral order γ:

Iγ(x) = j−γ Jγ(jx), (C.6)

obtained by replacing x with jx in Jγ(x).

• Ik(x): Modified Bessel function of the first kind of integral order k:

Ik(x) = j−k Jk(jx). (C.7)

• Kγ(x): Modified Bessel function of the second kind of non-integral order γ:

Kγ(x) =
π

2

I−γ(x) − Iγ(x)

sin(γπ)
(C.8)

• Kk(x): Modified Bessel function of the first kind of integral order k:

Kk(x) = lim
γ→k

Kγ(x). (C.9)

For integral order k, Bessel functions Jk(x) and Yk(x) may be used as a basis for
the solutions of the Bessel differential equation:

x2y′′ + xy′ + (x2 − k2)y = 0; k ≥ 0, (C.10)

while Ik(x) and Kk(x) may be used as a basis for the solutions of the modified Bessel
differential equation:

x2y′′ + xy′ − (x2 + k2)y = 0. (C.11)

An elementary change of variable in (C.11) results in the more general form:

x2y′′ + xy′ − (τ2x2 + k2)y = 0, (C.12)

which has the general solution:

y(x) = c1 Ik(τx) + c2Kk(τx). (C.13)

Equation (6.38) can be considered a generalized modified Bessel differential equation
from (C.12). Its solution, equation (6.39), was obtained from (C.13).

As a final remark on the solution of R̄, it should be noted that the variable x
used above in the definitions of the Bessel functions may be complex. The boundary
condition constants are then also complex.
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Eddy current loss in the stator iron

In this appendix, the two-dimensional magnetic field used in Chapters 5–7 is further
simplified to a one-dimensional field. It can also be seen as a “snapshot” of the
rotating situation where the tangential component of the field is zero. This situation
is drawn in Figure D.1, where the permanent magnet is situated in the lower vertical
position, and the only field component is radially upwards. The assumption of a
one-dimensional H-field is valid if 2b ¿ h, which is true for the EµFER machine.

The calculation method is described in detail in [Lam66], where the solution of
the power loss in the rectangular sheet conductor II in Figure D.1(c) is developed.
The power loss in a laminated core may be estimated from the power loss in sheet II
by multiplying with the volume of the stator iron.

The problem is described by assuming a time-harmonic magnetic field only in
the x-direction that is only dependent on z: H̄ = H̄x(z)îx and by writing the ordinary
differential equation:

d2H̄x

dz2
= k2

τ H̄x, (D.1)

from Maxwell’s equations. In equation (D.1), the constant kτ is similar to (6.69) and
defined by:

kτ ≡
√

jωσµ, (D.2)

where ω = 2π fs is the angular frequency of the field, σ is the conductivity and µ the
permeability of the material. The solution to (D.1) is assumed as:

H̄x(z) = H̄1ekτz + H̄2e−kτz. (D.3)

The boundary condition:

H̄x(b) = H̄x(−b), (D.4)
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Figure D.1: The stator laminations used for calculating the eddy current loss in the

stator iron.

is substituted into (D.5) to result in:

H̄0 = H̄1ekτb + H̄2e−kτb; (D.5)

H̄0 = H̄1e−kτb + H̄2ekτb, (D.6)

where H̄0 is the rms value of the field intensity at the edge of the plate. The solution
of the magnetic field intensity is therefore:

H̄x(z) = H̄0
cosh(kτz)

cosh(kτb)
. (D.7)

The current density is, by applying Ampére’s Law to (D.7):

J̄z(z) = H̄0kτ
sinh(kτz)

cosh(kτb)
. (D.8)

By expanding the hyperbolic functions and making use of the skin depth:

δ ≡
√

2

ωσµ
, (D.9)
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the magnitude of the current density can be written as:

| J̄z(z)| =

√
2

δ
H̄0

√√√√ cosh( 2z
δ ) − cos( 2z

δ )

cosh( 2b
δ ) + cos( 2b

δ )
(D.10)

The rms magnetic field intensity H̄0 can be replaced by the readily available flux
density in the stator iron. To do this, a surface integral of µH̄x can be taken to find
the total flux Φ, where H̄x is obtained from (D.7). This total flux is then divided by
the area of a lamination to find the mean flux density in the stator iron B̄s:

B̄s =
µδH̄0

b

√√√√cosh( 2b
δ ) − cos( 2b

δ )

cosh( 2b
δ ) + cos( 2b

δ )
. (D.11)

From equation (D.11), H0 is rewritten in terms of Bs, and substituted into (D.10):

| J̄z(z)| =

√
2B̄sb

δ2µ

√√√√ cosh( 2z
δ ) − cos( 2z

δ )

cosh( 2b
δ ) − cos( 2b

δ )
, (D.12)

which may be integrated to find the loss density due to eddy currents in the stator
iron:

ps,Fe,e,v =
1

2bσ

b∫

−b

| J̄z(z)|2 dz =
1

6
|B̄s|2σω2b2F(ξ) [W/m3]. (D.13)

In (D.13), the function:

F(ξ) ≡ 3

ξ

sinh ξ − sin ξ

cosh ξ − cos ξ
, (D.14)

was introduced. The variable ξ is the ratio of the lamination thickness to the skin
depth, or:

ξ ≡ 2b

δ
. (D.15)

The k-th space harmonic component of the radial component of the peak mag-
netic flux density due to the magnets, B̂r,mag,k, is used to find the peak yoke flux:

Φ̂sy,k = Φ̂r,mag,k/2, and in turn the rotor yoke flux density B̂sy,k. This flux density is
used to find the loss density per space harmonic of the magnets as:

ps,Fe,e,v,k =
1

6
̂̄B

2

sy,kσπ2 f 2
k (2b)2Fk(ξk), (D.16)

The total stator loss induced in the stator iron is obtained by multiplying (D.16) with
the stator iron volume:

Vs,Fe = π
(

r2
so − r2

si

)
ls, (D.17)

and summing over the space harmonics:

Ps,Fe,e =
∞

∑
k=1,3,5,···

1

6
Vs,Fe

̂̄B
2

sy,kσπ2 f 2
k (2b)2Fk(ξk). (D.18)
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Summary

Modelling and optimization
of a permanent magnet machine

in a flywheel

PhD thesis
by Stanley Robert Holm

Hybrid electric vehicles

To reduce the emissions of vehicles on our roads in the future, many companies,
research institutes and universities are now searching for alternatives for the internal
combustion engine.

One obvious solution is to replace it with an electric motor supplied by batteries,
resulting in an electric vehicle. Electric vehicles have some problems, though, like
the severely limited range and very long recharge times of the batteries. The thesis
starts by mentioning the declining sales figures of electric vehicles due to (among
others) these reasons. They are opposed to those of hybrid electric vehicles, whose
sales figures rose during the same time span.

In a hybrid electric vehicle, the internal combustion engine is not removed, but
another traction power source is added. This second power source is an energy stor-
age device of some kind, and provides peak power, while the internal combustion
engine provides average power. A hybrid electric vehicle goes a long way in solv-
ing the emission problem and the use of the second power source also increases the
efficiency of the vehicle; it does so by the load-levelling effect just mentioned, by
allowing the internal combustion engine to run in the narrow rpm band where it is
most efficient and by re-using energy recovered from braking.

This thesis is concerned with this second power source in the vehicle: the energy
storage device and its power delivery capabilities. Specifically, large vehicles like
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busses and trams are the focus of attention rather than passenger cars.

Energy storage technologies for large hybrid electric vehicles

At the start of the thesis, it is shown that large hybrid electric vehicles like busses and
trams require medium energy and high power. High power is in the order of 100s of
kWs, and a corresponding medium energy is the level required to deliver this power
for tens of seconds to several minutes.

To find the most suitable energy storage technology to meet these requirements,
four technologies were investigated. The result of this investigation is that composite
flywheels are the most suitable for applications like these, taking a large number of
factors into account.

The EµFER system

A project was started to design and build such a flywheel energy storage system
for use in large hybrid electric vehicles like busses and trams. The project was con-
ducted in collaboration with the Centre for Concepts in Mechatronics (CCM) B.V.
(Nuenen, the Netherlands). This project follows the successful EMAFER1 system.
The flywheel in the EMAFER system rotates at 15 000 rpm; its energy and continu-
ous power levels are 14.4 MJ and 300 kW, respectively.2 The follow-up system, called
EµFER, was initiated to reduce the overall size and mass, to reduce the no-load losses
and to build a system with a flatter profile than that of the EMAFER system. To re-
duce the required flywheel size and mass, the flywheel of the EµFER system rotates
at 30 000 rpm. It stores 7.2 MJ and the desired continuous power output is 150 kW,
with the machine losses (both at load and at no load) as low as possible.

The electrical machine

The geometry of the flywheel called for a radial flux machine with surface-mounted
magnets and solid back iron. To reduce the no-load loss induced in the stator iron,
the stator teeth (as used in EMAFER) were removed to obtain a slotless stator. This
in turn necessitated the use of Litz wire for the stator conductors to limit the induced
loss in the stator winding. Since the rotor rotates at 30 000 rpm in a low-pressure
atmosphere, cooling it is very difficult. This requires that very low loss is induced
in the rotor: a shielding cylinder is thus used. With these facts as design inputs, the
EµFER electrical machine was designed.

Design methodology: An analytical model

The thesis motivates the use of analytical techniques for the design of a machine of
this type and geometry. A comprehensive analytical model was derived that de-

1EMAFER = Electro-Mechanical Accumulator For Energy Re-Use.
2Where this system is used, the energy is 7.6 MJ and the power level varies between 133 kW and

200 kW.
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scribes the machine completely. This model, based on two-dimensional electromag-
netic fields, includes all space and time harmonic effects, as well as high-frequency
effects like the skin effect in the shielding cylinder.

This model consists of two parts: the permanent-magnet field (including three
permanent-magnet arrays) and the stator current field. The latter includes the effect
of the eddy currents in the shielding cylinder. All relevant and interesting machine
quantities were derived from these two fields or their combination, in terms of the
magnetic vector potential.

Torque and losses were obtained from the combined field by means of the Lorentz
force and the Theorem of Poynting.

The analytical model was validated by means of the finite element method
(magnetic field) and by means of experimental measurements (the locked-rotor ma-
chine impedance and no-load voltage).

Conclusions

The most important conclusions drawn in the thesis are grouped by the thesis objec-
tives:

1. To find the most suitable energy storage technology for use in large hybrid electric
vehicles like busses and trams.
The thesis shows that composite flywheels are the most suitable technology for
applications like these.

2. To design the electrical machine for the EµFER flywheel energy storage system.
The results obtained and documented in the thesis show that the design goal
of 150 kW output power was met. (The fundamental space and time harmonic
power is 177 kW.) Furthermore, the low-loss requirements were also met as is
evident from the low induced rotor loss in the shielding cylinder at load and
the induced loss in the stator at no load. The induced loss in the shielding
cylinder was calculated as 124 W for a typical CSI current waveform. The
induced stator iron loss was calculated as 2970 W and the induced copper loss
as 115 W. The sum of these losses is approximately 2% of the nominal power.

3. To optimize the machine geometry for given flywheel dimensions.
The optimum machine geometry for a given carbon-fibre inside radius (150
mm) has been found in the thesis. The optimization criteria were high torque,
low total stator losses and very low rotor loss in the shielding cylinder. This
optimum is:

• rsi = 23.036 mm; rso = 68.036 mm; rw = 101.66 mm; rci = 106.66 mm;
rco = 108.66 mm; rmo = 134.14 mm; rro = 150 mm.

For this geometry, the peak flux density in the rotor yoke is B̂ry = 1.9477 T;
the peak fundamental space and time harmonic component of the electromag-
netic torque is Te,1,1 = 158.85 Nm (corresponding to a power of 249.5 kW at
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15 000 rpm). The total stator iron loss was 3725 W (it was chosen to be below
4 kW), and the induced loss in the shielding cylinder 116 W for the same CSI
current waveform that was used throughout the thesis as an example.

4. To derive a comprehensive analytical model of the electrical machine.
The analytical model was experimentally validated. The model is two-dimen-
sional; the good agreement with measurements therefore led to the conclusion
than 3D effects only play a minor role, in spite of the relatively large effective
air gap. The model provides one voltage equation; this is the only voltage
equation that is needed to completely describe the machine.



Samenvatting

Modelering en optimalisering
van een permanente-magneet machine

in een vliegwiel

proefschrift
door Stanley Robert Holm

Hybride elektrische voertuigen

Voor het reduceren van de emissies van voertuigen op onze wegen zijn veel bedrij-
ven, onderzoeksinstituten en universiteiten tegenwoordig op zoek naar alternatie-
ven voor de interne verbrandingsmotor.

Eén voor de hand liggende oplossing is om die verbrandingsmotor te vervangen
door een elektrische machine en batterijen, om zodoende een elektrische voertuig
te verkrijgen. Elektrische voertuigen hebben echter problemen, zoals de beperkte
actieradius en de lange oplaadtijden van de batterijen. Het proefschrift begint met
het noemen van het feit van dalende verkoopcijfers van elektrische voertuigen als
gevolg van (onder andere) deze problemen. Deze cijfers vormen een tegenstelling
met die van hybride elektrische voertuigen: die zijn gestegen gedurende dezelfde
periode.

In een hybride elektrisch voertuig wordt de interne verbrandingsmotor niet ver-
wijderd, maar een ander vermogensbron wordt toegevoegd. Deze tweede bron van
vermogen is een energieopslag-eenheid die piek-vermogen levert, terwijl de interne
verbrandingsmotor het gemiddelde vermogen levert. Een hybride elektrisch voer-
tuig lost het probleem van emissies gedeeltelijk op en de tweede vermogensbron
verhoogt ook het rendement. Dit laatste gebeurt door het “load-levelling” effect
door de interne verbrandingsmotor te laten draaien in het optimale toerentalgebied,
en door het hergebruik van energie die bij het remmen teruggewonnen wordt.
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Dit proefsfchrift gaat over deze tweede vermogensbron in het voertuig: de ener-
gieopslag-eenheid en zijn vermogensmogelijkheden. Meer specifiek concentreert het
zich op grote voertuigen zoals bussen en trams, en niet op personenauto’s.

Energieopslag technologieën voor grote hybride elektrische voertuigen

Aan het begin van het proefschrift wordt aangetoond dat grote hybride elektrische
voertuigen zoals bussen en trams een gemiddelde hoeveelheid energie en hoog ver-
mogen nodig hebben. Hoog vermogen betekent enkele honderden kW’s, en een
gemiddelde hoeveelheid energie is de hoeveelheid energie nodig voor het overdra-
gen van dit vermogen gedurende periodes van enkele tientallen van seconden tot
enkele minuten.

Om de meest geschikte energieopslag technologie te vinden om aan deze eisen
te voldoen, worden vier technologieën onderzocht. Het resultaat van dit onderzoek
is dat kunststofvliegwielen het meest geschikt is voor toepassingen als deze.

Het EµFER systeem

Er is een project opgestart om zo’n vliegwielsysteem te ontwikkelen en te bouwen
voor gebruik in grote hybride elektrische voertuigen zoals bussen en trams. Dit
project is uitgevoerd in samenwerking met het Centre for Concepts in Mechatron-
ics (CCM) B.V. (Nuenen, Nederland). Het project volgt op het succesvolle EMAFER3

project. Het vliegwiel in het EMAFER systeem draait op 15 000 rpm; de energieop-
slag is 14.4 MJ en het nominaal vermogen is 300 kW.4 Het opvolgsysteem, genaamd
EµFER, is geı̈nitieerd om het volume en de massa te verminderen, om de nullastver-
liezen te reduceren en om een systeem te bouwen met een platter profiel dan dat van
het EMAFER systeem. Om de grootte en de massa te verminderen, draait EµFER
op 30 000 rpm. De energieopslag is 7.2 MJ en het continu vermogen is 150 kW. De
verliezen in nullast en vollast worden geminimaliseerd.

De elektrische machine

De geometrie van het vliegwiel is geschikt voor een radiaal flux machine met mag-
neten op het rotoroppervlak en een rotorjuk van massief ijzer. Om de nullastver-
liezen te reduceren, zijn de statortanden die aanwezig waren in EMAFER, in EµFER
verwijderd. Om het geı̈nduceerd verlies in de statorwikkeling te beperken zijn gelei-
ders van Litze draad gebruikt. Aangezien de rotor op 30 000 rpm draait in een lage
druk atmosfeer, is de koeling ervan erg moeilijk. Dit vereist dat het verlies in de
rotor laag wordt gehouden. Daarom wordt een afschermcilinder gebruikt. Met deze
ontwerpuitgangspunten is de EµFER elektrische machine ontworpen.

3EMAFER = Electro-Mechanical Accumulator For Energy Re-Use.
4Waar dit systeem wordt gebruikt, is de energie 7.6 MJ en het vermogensniveau ligt tussen 133 kW en

200 kW.
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Ontwerpmethodologie: Een analytisch model

Het proefschrift motiveert het gebruik van analytische technieken voor het ontwerp
van een machine van dit type en geometrie. Een uitgebreid analytisch model dat
de machine compleet beschrijft wordt afgeleid. Dit model, gebasseerd op tweedi-
mensionale veldberekeningen, omvat alle effecten van tijdelijke- en ruimtelijke har-
monischen, en hoogfrequente effecten zoals stroomverdringing in de afschermcilin-
der.

In dit model bestaat het magnetisch veld uit twee delen: het veld ten gevolge
van de permanente magneten veld (voor drie permanente-magneet configuraties)
en het veld ten gevolge van de statorstromen. Het laatsgenoemde veld omvat ook
het effect van wervelstromen in de afschermcilinder. Alle relevante en interessante
machinegrootheden worden afgeleid van deze twee velden of hun combinatie. Het
veld wordt berekend via de magnetische vectorpotentiaal.

Koppel en verliezen worden berekend uit het gecombineerde veld door middel
van de Lorentzkracht en de Stelling van Poynting.

Het analytisch model is geverifieerd door middel van de eindige elementen
methode (magnetisch veld) en door middel van experimenten (de machine impedan-
tie bij geblokkeerde rotor en de nullastspanning).

Conclusies

De belangrijkste conclusies van het proefschrift zijn gegroepeerd in de doelstellin-
gen:

1. Het vinden van de meest geschikte energieopslag technologie voor het gebruik in groot
hybride elektrische voertuigen zoals bussen en trams.
Het proefschrift laat zien dat vliegwielen de meest geschikte technologie zijn
voor dit soort toepassingen.

2. Het ontwerpen van de elektrische machine voor het EµFER vliegwiel energieopslag
systeem.
Het ontwerpdoel van 150 kW is bereikt. (Het vermogen overgedragen door de
grondharmonische (ruimtelijk en tijdelijk) is 177 kW.) Verder zijn de nullastver-
liezen laag: dit wordt bevestigd door het lage verlies in de afschermcilinder bij
vollast en het lage geı̈nduceerde verlies in de stator bij nullast. Het verlies in de
afschermcilinder is berekend als 124 W voor een typische CSI stroomgolfvorm.
Het geı̈nduceerde statorijzerverlies is berekend als 2970 W en het koperverlies
als 115 W. Deze verliezen zijn samen ongeveer 2% van het nominaal vermogen.

3. Het optimaliseren van de machinegeometrie voor gegeven vliegwieldimensies.
De optimale machinegeometrie voor een gegeven koolstofvezel binnenstraal
(150 mm) is berekend in het proefschrift. De optimaliseringscriteria waren een
hoog koppel, lage statorverliezen en een heel laag rotorverlies in de afcherm-
cilinder. Dit optimum is:
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• rsi = 23.036 mm; rso = 68.036 mm; rw = 101.66 mm; rci = 106.66 mm;
rco = 108.66 mm; rmo = 134.14 mm; rro = 150 mm.

Voor deze geometrie is de piekwaarde van de fluxdichtheid in het rotorjuk
B̂ry = 1.9477 T; de piekwaarde van het elektromagnetische koppel veroorzaakt
door de ruimtelijke en tijdelijke grondharmonische component van het veld
is Te,1,1 = 158.85 Nm (wat overeenkomt met een vermogen van 249.5 kW bij
15 000 rpm). Het totale statorverlies is 3725 W (gekozen als onder de 4 kW), en
het geı̈nduceerd verlies in de afschermcilinder voor een typische CSI golfvorm
is 116 W.

4. Het afleiden van een uitgebreid analytisch model van de elektrische machine.
Het analytisch model is experimenteel geverifieerd. Het model is tweedimen-
sionaal; de goede overeenkomst van berekeningen en metingen leidt tot de
conclusie dat 3D effecten slechts een beperkt rol spelen, ondanks de relatief
grote effectieve luchtspleet. Het model resulteert in één spanningsvergelijk-
ing; dit is de enige spanningsvergelijking die nodig is om de machine in zijn
geheel te beschrijven.
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